

AD-A177 622

CHEMICAL
RESEARCH,
-DEVELOPMENT &
ENGINEERING
CENTER

CRDEC-TR-87021

PERSONAL COMPUTER PROGRAM FOR CHEMICAL HAZARD PREDICTION (D2PC)

by C. Glenvil Whitacre
Joseph H. Griner, III
Michael M. Myirski
Dale W. Sloop
STUDIES AND ANALYSIS OFFICE

111 2

January 1987

U.S. ARMY ARMAMENT MUNITIONS CHEMICAL COMMAND

Aberdeen Proving Ground, Maryland 21010-5423

BEST AVAILABLE COPY

This describent have been approved for pulling conference and scale; he distribution is uniformly all.

Disclaimer

The findings in this report are not to be construed as an official Department of the $\mbox{Arm} y$ position unless so designated by other authorizing documents.

Distribution Statement

Approved for public release; distribution is unlimited.

PREFACE

The work described in this report was authorized under Project No. 1L162706A553, CB Defense and General Investigations, Technical Area 3-B, Analysis and Integration of Chemical Defense Systems. This work was started in February 1985 and completed in October 1985.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, U.S. Army Chemical Research, Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving Ground, Maryland 21010-5423. However, the Defense Technical Information Center is authorized to reproduce the document for U.S. Government purposes.

This report has been approved for release to the public.

Acces	sion For		
NTIS	GRA&I		
DTIC	TAB	~	
Unann	ounced		
Just1	fication_		
	ibution/		
	lability (
Dist	Aveil and Special		DTIC
A-1			COPY

Blank

CONTENTS

1.1 Objective			Page
1.2 Background	1.	SCOPE	7
1.2 Background	1.1	Objective	7
2. DESCRIPTION OF THE PROGRAM		Background	
2.1 Organization			7
2.1 Organization			
3. INPUT	2.	DESCRIPTION OF THE PROGRAM	7
3. INPUT	2.1	Organization	7
3.1 Question 1, INPUT; NOVICE LEVEL 3, 2, 1, or 0 NOV		Operation	8
3.1 Question 1, INPUT; NOVICE LEVEL 3, 2, 1, or 0 NOV	3	TNDIT	12
3.2 Question 2, LOCATION	•		
3.3 Question 3, SEASON SEA	3.1	Question 1, INPUT; NOVICE LEVEL 3, 2, 1, or 0 NOV	
3.4 Question 4, HEIGHT OF THE MIXING LAYER HML		Question 2, LOCATION LOC	
3.5 Question 5, MUNITION TYPE MUN			
3.6 Question 6, AGENT TYPE AGN		Question 4, HEIGHT OF THE MIXING LAYER HML	
3.7 Question 7, SPILL OR AIRBORNE SOURCE QQQ		Question 5, MUNITION TYPE MUN	
3.8 Question 8, RELEASE TYPE REL		Question 6, AGENT TYPE AGN	
Question 9, STABILITY TYPE STB		Question 7, SPILL OR AIRBORNE SOURCE QQQ	
3.10 Question 10, WIND SPEED (m/sec) WND		Question 8, RELEASE TYPE REL	
3.11 Question 11, ALF, SYR (m), BTA, SZR (m)		Question 9, STABILITY TYPE STB	
3.12 Question 12, TEMPERATURE (°C)			
3.13		QUESTION II, ALF, SYR (M), DIM, SZR (M)	
Question 14, MOLECULAR WEIGHT		Question 12 O () (mg) OT () (min) NOT	
Question 15, ALL OTHER INPUT		Question 13, Q () (mg), Q1 () (min) RQ1	
3.16 Question 16, ATMOSPHERIC PRESSURE (mm Hg) PMM		Obestion 15 ALL OTHER INDIT	
3.17 Question 17, SURFACE CODE SUR 17 3.18 Question 18, TIME OF EVAPORATION (min) TIM 17 17 3.19 Question 19, AREA OF THE WETTED SURFACE (sq m) ARE 17 3.20 Question 20, LENGTH OF SURFACE DOWNWIND (m) LEN 17 3.21 Question 21, FMW, FMV, VAP (mm Hg), BPT (deg K) 17 3.22 Question 22, TIME AFTER FUNCTIONING TIM 17 3.23 Question 23, OUTPUT CODE OPC 17 3.24 Question 24, HEIGHT OF STACK (m) HST 18 3.25 Question 25, DIAMETER FSTACK (m) DST 18 3.26 Question 26, TEMPERATURE OF STACK (deg C) TST 18 3.27 Question 26, TEMPERATURE OF STACK (deg C) TST 18 3.28 Question 27, VELOCITY OF EFFLUENT (m/sec) VST 18 3.29 Question 29, FROST PROFILE EXPONENT FRO 18 3.30 Question 30, HEAT RELEASED (cal) HRL 18 3.31 Question 31, CLOUD RADIUS (m) CRD 18 3.32 Question 32, STATION LATITUDE AND LONGITUDE (deg) SLA and SLO 18 3.33 Question 33, MONTH, DAY, HOUR, IMM, IDD, and HRS 18 3.34 Question 34, CLOUD COVER (1/10), CLOUD HEIGHT (ft) CCT		Ouestion 16 ATMOSPHERIC PRESSURE (mm Ha) PMM	
3.18			
Question 19, AREA OF THE WETTED SURFACE (sq m) ARE		Question 18. TIME OF EVAPORATION (min) TIM	
Question 20, LENGTH OF SURFACE DOWNWIND (m) LEN		Ouestion 19. AREA OF THE WETTED SURFACE (sq m) ARE	
Question 21, FMW, FMV, VAP (mm Hg), BPT (deg K)		Ouestion 20. LENGTH OF SURFACE DOWNWIND (m) LEN	17
Question 22, TIME AFTER FUNCTIONING TIM			17
Question 23, OUTPUT CODE Question 24, HEIGHT OF STACK (m) HST			17
3.25 Question 25, DIAMETER of STACK (m) DST	3.23	Ouestion 23, OUTPUT CODE OPC	17
3.26 Question 26, TEMPERATURE OF STACK (deg C) TST	3.24	Question 24, HEIGHT OF STACK (m) HST	
3.27 Question 27, VELOCITY OF EFFLUENT (m/sec) VST	3.25	Question 25, DIAMETER of STACK (m) DST	
3.28 Question 28, RELATIVE DENSITY OF EFFLUENT RDE			
3.29 Question 29, FROST PROFILE EXPONENT FRO	3.27		
3.30 Question 30, HEAT RELEASED (cal) HRL			
3.31 Question 31, CLOUD RADIUS (m) CRD		Question 29, FROST PROFILE EXPONENT FRO	
3.32 Question 32, STATION LATITUDE AND LONGITUDE (deg) and SLO 3.33 Question 33, MONTH, DAY, HOUR, IMM, IDD, and HRS Question 34, CLOUD COVER (1/10), CLOUD HEIGHT (ft) CCT			
and SLO			18
3.33 Question 33, MONTH, DAY, HOUR, IMM, IDD, and HRS 18 3.34 Question 34, CLOUD COVER (1/10), CLOUD HEIGHT (ft) CCT	3.32		4.0
3.34 Question 34, CLOUD COVER (1/10), CLOUD HEIGHT (ft) CCT		and SLO	
3.34 QUESTION 34, CLUUD COVER (1/10), CLUUD HEIGHI (TC) CCI		Question 33, munit, DAY, HOUR, IMM, IDD, and HRS	18
	3.34	Question 34, CLOUD COVER (1/10), CLOUD HEIGHT (TT)	10

3.35 3.36	Que Que	stion stion	35. 36,	SUN WOOD	ELE S T	VATIO YPE	ON AN	IGLE WOO	(deg	;)		SUN	• • •	•••	• • •	• • •	•	18 18
4.	DISCUS	SION	• • • •		• • • •	• • • •	• • • •	• • •	• • • •	• • • •	••••	• • • •	• • •			•••	•	18
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Res Con DEF Mul Win Uni Cal	gram can a centr INE N tiple d Spe ts Co culat oo Fi ll Ai	nd thation DI on Muni ed in nvers ions res	ne HL n Opt n NC! ition n Woo ition Duri	D Ction	omman s Input	nd .						• • • •		• • • •		•	18 19 20 20 20 21 21
5.	ERROR	MESSA	GES .	• • • •	• • • •	• • • • •		• • •	• • • •	• • •	• • • •	• • • •	•••	•••	•••	•••	•	2
6.	OUTPUT	••••		• • • •	• • • •	• • • •	• • • •	• • • •		• • • •	• • • •	• • • •	• • •	• • •	•••		•	23
7.	SUMMAT	ION O	F DOS	SAGE	DIS	TRIBU	10 I T L	١	• • • •	• • • •	• • • •	• • • •	• • •	• • •	•••			24
8.	VAPOR	DEPLE	TION	• • • •	••••	• • • •	••••	•••	• • • •	• • • •	• • • •	• • • •	• • •	•••	•••	•••	•	2
A	PPENDIXES	i																
	A. B. C. D.	NOTE VAPO GLOS PROG	S ON R DEI Sary Ram 1	PROC PLET: IST:	GRAM ION ING	CONS	STRUC	OITS	N	• • • •	• • • •	• • • • • • • •	•••	• • •	• • •	• • •	•••	27 59 73 89

..

PERSONAL COMPUTER PROGRAM FOR CHEMICAL HAZARD PREDICTION (D2PC)

になった。小型和での記録の

こうかんだい またいのうじょうかん

THE TANKS OF THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPERTY OF

1. SCOPE

1.1 Objective.

It is the object of this report to document a personal computer program that will provide computational assistance in estimating chemical downwind hazard in terms of peak vapor concentration or accumulated dosage.

1.2 Background.

This program is a revision of program D2, which was documented earlier. The methodology is based on DODESB Technical Paper No. 10, Change 3, Methodology for Chemical Hazard Prediction. June 1980.2

1.3 Approach.

The program is written in FORTRAN 77 for an IBM compatible personal computer. It is conversational, employing a modified form of menu input with a data base provided for standard chemical agents and munitions. Estimates of hazard distance are made for either the expected peak concentration of vapor, the dosage, or the accumulated dose that an individual might receive at that distance.

DESCRIPTION OF THE PROGRAM

2.1 Organization.

The program is made up of a MASTER and 12 subroutines. It is the function of the MASTER to obtain the required information from the user by selecting the questions to be asked for a given problem. The data that is input and retrieved from the tables is then organized for use by one of the downwind distance calculators (DDS or CDS), which makes the estimate of distance and returns it to the operator. The exchange of information between subroutines is diagrammed in Figure 1.

Figure 1. Information Exchange Between Subroutines

¹Whitacre, C.G., and Myirski, M.M. ARCSL-TR-82014. Computer Program for Chemical Hazard Prediction (D2). September 1982. UNCLASSIFIED Report.

²Technical Paper No. 10. Methodology for Chemical Hazard Predictions. Department of Defense Explosives Safety Board. March 1975. UNCLASSIFIED Report.

Selection of subroutine DDS or CDS is determined by the choice of dosage or concentration as the exposure index for downwind distance. Subroutine DDS is supported by the error function, ERF, and by subroutine HD42, which is called when an explosive release of HD is requested. Also the plume rise subroutine, PLRS, may be called by DDS or CDS if a rising cloud is to be traced with distance.

The other subroutines support the MASTER. Subroutine EVAP is called to determine the airborne source when the release is by evaporation. STAB is called to select the Pasquill stability category if the meteorological observations are input. When release is in a wooded area, subroutine WOODS is called to select the special diffusion parameters for the particular type of woods. Subroutine PLRS may be called by MASTER to compute the rise of a heated cloud or to initialize for the call from DDS or CDS as explained above.

Subroutines DEF and QLIST work with MASTER to provide variable definitions to the user when needed. DEF also blocks the repetition of request for the same information on successive runs.

2.2 Operation.

The modified menu form of input was developed for this program to accommodate a wide range of user applications and a wide range of experience in the user. A data base is provided for defined storage sites, standard munitions, and agents. The appropriate data for these systems is recovered by selecting the site and system from menus. The menus also include a nonstandard or nondefined option and, when these are used, the needed data is then requested. This approach permits the full power of the models to be drawn out.

The format of the questions is selected by the operator to match his experience level. Four levels are provided. In the most lengthy form, all options are listed and defined with each question. In the shortest form, each question is one line, and the operator is expected to remember the options. However, at any point, the listing for that question may be recalled by answering with question marks. The question is then repeated.

For all numeric inputs, the units are specified in the question; these are generally metric. Other units may be used as long as the strange units are identified by the proper code. Again, question marks (or an error) will cause these codes to be displayed and the question repeated.

Section () Sectio

When all of the essential questions have been asked for a given run (execution of the downwind hazard estimator), the questions will terminate with the request "ALL OTHER INPUT." At this point, output and control options may be entered. The options may be displayed as tables by typing TAB and the number of the table. The tables are defined as follows:

- 1. Control options
- 2. Assessment options
- 3. Output options
- Alphabetic listing of parameter codes

This list may be displayed by entering three question marks (???). From the control options, you will see that the code ALL will cause the program to continue

and execute. When execution has terminated, the program will return to the ALL question (ALL OTHER INPUT). Here you may change options and reexecute, restart, or stop. The control options are listed in Tables 1, 2, and 3. These tables may be displayed with TAB 1, TAB 2, or TAB 3 commands as described above.

Table 1. Control Options Run Control

RST Restart at question 1, clear input blocks RSN Rescan from question 2 ALL Execute downwind calculation STP Stop GTO Go to entry point specified (question number) IRT Return to specified question Clear input block for specified question INP HLD Hold variable at present value RLS Release hold of variable TAB Display table DSP Question definition

Table 2. Assessment Control

List of table codes

???

IMA = 0Dosage (default) Concentration (mg/m^3) **2** Concentration (ppm) Fumigation concentration 2MC = 1Do not use 2-minute correction with GB and VX vapor Use 2-minute correction with GB and VX vapor 2 (default value) No effects, no deaths, 1 percent lethality (default) MNR = 0 No deaths, 1 percent lethality 1 percent lethality VDP = 0Without vapor depletion (default) With vapor depletion

Table 3. Output Control

NOV - O List only input variable List variable and options = 2 List variable and options with definitions 0P0 = 0Output short heading and interpolated distance only (default) Include diffusion parameters and D versus X **-** 1 Above plus components of D Crosswind width of cloud with distance OPC = 0 Use HT max from PLRS List f(x); use HT max **=** 1 Use HT = f(x)List f(x); use HT = f(x)

The ALL question may also be used to input new parameter values directly. For example, if you had made an estimate of the hazard distance for a wind speed of 1 m/sec, you could obtain an estimate for 5 m/sec by typing the following:

WND 5. ALL

The program will rescan the question list, display the current value of each parameter, and stop again at the ALL question for further instruction. The code ALL will then cause it to execute for 5 m/sec and display the new estimate. If multiple parameter changes are required, these are made as separate entries (giving the code and the value for each) before the first ALL response. The stop for the second ALL permits the user to review the parameter values before the next execution. Of course, more changes can be made then, but the program may rescan again and stop again.

The program's decision to rescan after entries in the ALL question is based on the changes that the new parameter value might make in the input questions and the data retrieval from the data base. It is important to realize that this retrieval is repeated with each rescan. Thus, a parameter value that may have been entered as different from the data base would normally be changed back to the data base value on rescan. This change can be avoided if a hold is placed on the specific parameter. This is done by the command code HLD and the parameter code. As an example,

HLD HML

will prevent the height of the mixing layer, HML, from being changed by rescan. Of course, this is not needed unless a nonstandard value has been entered. The hold is released with the command RLS and the parameter code. The HLD command may be stated for any parameter, but it is only useful for those variables that may be changed by rescan. The following is the list of variables with which HLD is effective.

VARIABLES USED WITH HLD

Code	Variable
FMW	Molecular weight
HML	Height of the mixing layer
MNR	Minimum response level
NCI	Concentrations of interest (see Section 4.4)
NDI	Dosages of interest
PMM	Atmospheric pressure
	Source strength
QQQ SXS	
SYS	Source sigmas
SZS	ovar va v rgmas
2MC /	Two-minute correction control

The control and parameter codes that can be entered through the ALL questions are given in Table 4. These may be displayed by the program with TAB 4. Here the display is in four pages and progresses to the next page each time the return key is pressed.

Table 4. Options For the ALL Question

Code	Input Variable	
AGN	Agent, see Section 3.6 or DSP 6	
ALL	Control word, execute program	
ALF ARE	Slope of the sigma-y versus x curve	121
BPT	Area of puddle Boiling point	(m²) (°K)
BRT	Breathing rate	(1/min)
BTA	Slope of the sigma-z versus x curve	(1/10/11/
CCT	Cloud cover	(1/10)
CHT	Cloud height	(ft)
CRD	Cloud radius	(m)
DLX	Change in x (first cycle)	(m)
DSP	Display question definition	
DST	Diameter of stack	(m)
FMV	Molecular volume	(cm ³ /gm mole)
FMW	Molecular weight	(gm/mole)
FRO	Slope of the frost wind profile	
GTO HML	Control. Go to specified question	/\
HLD	Height of the mixing layer Hold value of symbol	(m)
HRL	Heat released	(cal)
HRS	Local standard military time	(hr)
HST	Height of stack	(m) '
HTS	Height of source	(m)
IDD	Number of the day	\ ,
IMA	Method of assessment control, see TAB 2	
IMM	Number of the month	
INP	Control. Clear input block for question	
IRT	Control. Return to specified question	
LEN	Length of puddle, downwind	(m)
LOC	Location, see Section 3.2 or DSP 2	
MNR Mun	Minimum response level, see TAB 2 Munition, see Section 3.5 or DSP 5	
NCI	Number of concentrations of interest	
NDI	Number of dosages of interest	
NMU	Number of munitions	
NOV	Novice level	
NQI	Number of source intervals	
OPC	Output for stack, see TAB 3	
0P0	Output control, see TAB 3	
PMM	Atmospheric pressure	(mm hg)
QQQ	Airborne source	(mg)
RDE	Relative density of effluent	
REF	Reflection coefficient (default = 1)	
REL RLS	Method of release, see Section 3.8 or DSP 8 Release hold of symbol value	
RSN	Rescan from question 2	
RST	Control. Restart	
SEA	Season, see Section 3.3 or DSP 3	
SKF	Skin factor for subject clothing	

Table 4. (cont'd)

Code	Input Variable	
SLA SLO	Latitude Longitude	(°)
SMH	Sampling height	(m)
STR	Stability, see Section 3.9 or DSP 9	\''' <i>\</i>
SUN	Sun elevation angle	(°)
SUR	Surface type, see Section 3.17 or DSP 17	` '
SEV	Settling velocity of cloud centroid (default=0)	(m/sec)
SXS	Source sigma x	(m)
SYR	Reference sigma y at 100 m	(m)
SYS	Source sigma y	(m)
SZR	Reference sigma z at 100 m	(m)
SZS	Source sigma z	(m)
TAB	Table display	
TEV	Time of evaporation	(min)
TIM	Time after functioning (INS, HD)	(min)
TMC	Time to met change	(min)
TMP	Temperature	(°C)
TST	Temperature of stack	(°C)
VAP	Vapor pressure	(mm Hg)
VST	Velocity of effluent from stack	(m/sec)
WND WOO	Transport wind speed	(m/sec)
ZZO	Woods type, see Section 3.36 or DSP 36	1
2MC	Roughness length	(m)
???	Two-minute corrections control, see TAB 2 Display list of tables	

When the program rescans, it repeats the same logic string that was followed in selecting the initial questions. The original questions are relisted along with the current value of the parameter, but the program does not stop for input unless a new question is needed. It will then type the word "INPUT" and stop. All calculations done to establish initial data, such as the selection of the stability class or the amount evaporating from a puddle, will also be recomputed and relisted. The format of this listing will be discussed in Section 4.8.

3. INPUT

3.1 Question 1, INPUT; NOVICE LEVEL 3, 2, 1, or 0 NOV.

This question is answered by a single digit. Digit 2 will cause the program to list the possible options and a one-line definition for each input variable. Digit 1 will supply a one-line list of options for the multiple choice questions, and digit 0 lists only the questions. The digit 3 will list the options and definitions as described for 2, but will begin by displaying two pages of general information about the operation of the program. The novice level may be changed by a return to question 1 (RST) or by assigning a new value to NOV in the ALL statement.

3.2 Question 2, LOCATION LOC.

This question is answered by a three-character code that identifies one of the U.S. chemical storage sites or by "NDF" if some other location is being considered. If a listed site is specified, the location, average pressure, and height of mixing layer are recovered from the data base. When the location is not defined by this list, these parameters are requested as required. The following is a list of the option codes.

LOC Code	Location
AAD	Anniston Army Depot
DPG	Dugway Proving Ground and Tooele Army Depot
EWA	Edgewood Area, Aberdeen Proving Ground
JHI	Johnston Island
LBG	Lexington-Blue Grass Army Depot
NAP	Newport Ammunition Plant
PBA	Pine Bluff Arsenal
P.A.D	Pueblo Army Depot
RMA	Rocky Mountain Arsenal
UAD	Umatilla Army Depot
EUR	USAEUR
NDF	Not defined

3.3 Question 3, SEASON SEA.

A CONTROL OF THE PARTY AND A CONTROL OF THE PARTY OF THE

When this question is asked, a three-letter code must be specified to select one of the four seasons. The season is used to select the height of the mixing layer for the listed storage sites. (This question is not asked when the location is listed as NDF.) The following is the list of season codes.

SEA Code	Season
WIN	Winter
SPR	Spring
SUM	Summer
FAL	Fall

3.4 Question 4, HEIGHT OF THE MIXING LAYER HML.

This question is asked to obtain the height of the mixing layer when it is not defined by the location and season. If a different height is to be specified for a standard location, this is done by declaring the new value in the ALL question (Section 3.15).

KKKKKK SKKKKK PESEKKK KERBER PESEK

3.5 Question 5, MUNITION TYPE MUN.

Selection from 10 standard chemical rounds may be made or "NON" may be specified for other items. For the standard item, fill weight, agent type, and source dimensions are recovered. For this entry, any three characters may be entered and will be carried through to output. Data is available only on the following items:

MUN Code	MUN
1 05	105-mm Cartridge, M60, M360
155	155-mm Projectile, M110, M121A)
8IN	8-inch Projectile, M426
500	500-1b Bomb, MK94
750	750-1b Bomb, MC-1
M55	115-mm Rocket, M55
525	525-1b Bomb, MK116
139	Bomblet, M139
M23	Land Mine, M23
4.2	4.2 Inch Cartridge, M2Al
NON	Nonmunition

3.6 Question 6, AGENT TYPE AGN.

The agent type requires a two-character code and again will pass any two characters through to output. The physical constants are stored for the substances listed below. Dosage values estimating 1 percent lethality, no deaths, and no effects are retrieved for all of these substances except UDMH. The values for 1 percent lethality were taken from DODESB TP No. 10.2 The no deaths and no effects are best current estimates based primarily on ORG 40.3 The following is a list of the agent codes:

AGN Code	Agent	AGN Code	Agent
GA	Tabun	Н1	HN-1, Nitrogen mustard
GB	Sarin	Н3	HN-3, Nitrogen mustard
GD	Soman	HT	60% HD and 40% T
GF	EA 1212	LL	Lewisite
ΫX	EA 1701	AC	Hydrogen cyanide
BZ	Incap agent	CG	Phosgene
HŸ	Hydrazine	ČK	Cyanogen chloride
UD	UDMH	DM	/ 'msite
HD	Distilled mustard	NA	Nonagent

3.7 Question 7, SPILL OR AIRBORNE SOURCE QQQ.

For evaporative release, this is the amount that is initially spilled. The EVAP program takes this as Q and then computes Q', which is the amount that becomes airborne. For other forms of release, this is the total amount that is airborne over the release period. The exception is continuous release, which is explained in the next section (3.8).

³Solomon, Irving et al. ORG Report 40. Methods of Estimating Hazard Distances from Accidents Involving Chemical Agent. Operations Researh Group, Edgewood Arsenal, Maryland. February 1970. CONFIDENTIAL Report.

3.8 Question 8, RELEASE TYPE REL.

The code for release type must be selected from the list given below.

REL Code	Type of Release (REL)
INS	Instantaneous (explosion)
EVP	Evaporation from a puddle formed by a spill
SEM	Semicontinuous. Constant for a finite time.
VAR	variable. The source is defined as a number of release intervals, each constant for a finite time (maximum of 6).
STK	Release of heated effluent from a stack
STJ	Release from a stack when inertial or jet effect dominates
FLS	Flash fire from ground level
FIR	Fire burning for finite time
IGL	IGL fire for M55 with GB or VX
EVS	Still air evaporation (see Section 4.10)

When the distance is to be based on peak concentration, a time of infinity (1.E36) may be specified for the semicontinuous release, which converts this into a continuous release. In this event the input, Q, is now the rate of release in mg/min.

3.9 Question 9, STABILITY TYPE STB.

This is a single-character input. The Pasquill categories are identified as A through F; the U option will cause the program to request the diffusion parameters; S will select the Pasquill category from additional data; and W will select from a table of diffusion rates for different types of woods. The logic of the stability selection and the table of woods parameters are given in Appendix A.

STB Code	Atmospheric Stability (Pasquill) (STB)
A unstable BC	Pasquill Stability Categories
E F stable U	Undefined. Used when ALF, SYR, BTA, SZR are input.
S	Select stability from meteorological observations
W	Wooded areas

3.10 Question 10, WIND SPEED (m/sec) WND.

The transport wind speed is entered in meters per second as indicated. Other units, such as knots or miles per hour, may be used if the number is preceded with the proper two-character code. The list of codes may be displayed by typing two question marks.

When the WOODS option is specified for stability, the wind speed is input for a height of 10 meters. The speed is converted by the program to the expected below canopy rate. In order to enter the below canopy rate directly, the number is entered as negative.

3.11 Question 11, ALF, SYR (m), BTA, SZR (m).

The diffusion parameters for the sigma y and sigma z distributions are requested when the U option is specified for stability. The variable ALF is the slope of log sigma y versus log distance, and 3TA is the slope for log sigma z versus log distance. The reference values SYR and SZR are taken at 100 meters.

3.12 Question 12, TEMPERATURE (°C).

THE PARTY OF THE P

5030000

THE PASSESS ASSESSED WITHOUT ASSESSED

For instantaneous release of HD and when the EVP release option is used, question 12 is preceded by the word SURFACE. This indicates that the temperature specified should be the temperature of the liquid surface. Other releases that request temperature employ the air temperature. (When the temperature is not requested, the number printed with temperature in the output summary has no effect on the prediction).

3.13 Question 13, Q () (mg), QT () (min) NQI.

Question 13 is provided to input source time increments (that is the quantity released and the time over which the release was made.) This form is used for all types of release except instantaneous and evaporative. For semicontinuous release (SEM), one time interval is implied and does not have to be entered. For the remaining releases, the number of intervals, NQI, is requested. From one to six intervals may be defined. This is followed by one Q and TQ pair for each (maximum of 6). The quantity, Q, is the amount released in that interval, and the time is <u>cumulative</u> as measured from the beginning of the first interval.

3.14 Question 14, MOLECULAR WEIGHT FMW.

If the substance released is not in the agent list given above (Section 3.6) and the molecular weight enters into the calculation, this will be requested here.

3.15 Question 15, ALL OTHER INPUT.

Although not otherwise specified, the ALL question is 15th in sequence. The other questions are numbered so that the operator may refer to a specific question with control statements. These statements are INP, GTO, and IRT as listed in Table 1 above. The GTO option will initiate a rescan and stop for input at the question specified. Any other questions defined by IMP will also stop for input. The IRT option is like GTO except that it is repeated automatically at the end of each execution. Once set, this is cleared by setting the question to zero (IRT 0).

The assessment controls IMA, 2MC, MNR, and the output, OPO, are all set to default values as indicated in Table 2. If other options are required,

these should be set at this time. Options IMA, NOV, and OPO will remain as set until another option is given. Options 2MC and MNR are reset to the default values on rescan unless a hold is placed on each (HLD 2MC or HLD MNR). The command DSP with a question number will display the options and definitions for that question.

3.16 Question 16, ATMOSPHERIC PRESSURE (mm Hg) PMM.

The atmospheric pressure is requested, when needed, if the standard site has not been defined. The pressure for a standard site may be changed in the ALL question. To keep this value, a hold should be placed on PMM (HLD PMM).

3.17 Question 17, SURFACE CODE SUR.

Surface codes for gravel (GRA) and concrete (NPR) are provided that will make a rough estimate of the puddle size that would be formed on level terrain. The NDF option permits the wetted area to be input.

3.18 Question 18, TIME OF EVAPORATION (min) TIM.

This is the time of evaporation. If the time given is greater than the time required for total evaporation, the time is reset by the program.

3.19 Question 19, AREA OF THE WETTED SURFACE (sq m) ARE.

If the surface code is given as NDF, the area of the puddle will be requested.

3.20 Question 20, LENGTH OF SURFACE DOWNWIND (m) LEN.

This is the estimated fetch of the vapor over the wetted surface of the puddle.

3.21 Question 21, FMW, FMV, VAP (mm Hg), BPT (deg K).

If the physical constants are not available in the data base, the molecular weight, molecular volume, vapor pressure (at the temperature of interest), and boiling point are requested.

3.22 Question 22, TIME AFTER FUNCTIONING TIM.

This question is asked only for explosive release of HD from a standard round. The time is the lapsed time from functioning to the time the cumulative dosage is measured.

3.23 Question 23, OUTPUT CODE OPC.

One of the output options listed under OPC in Table 4 is entered here. These options refer only to the output when the plume rise options STK and STJ are specified. These options control what is displayed but also control whether the cloud is traced with distance (f(x)) or is assumed to rise as one step above the stack.

- 3.24 Question 24, HEIGHT OF STACK (m) HST. 3.25 Question 25, DIAMETER OF STACK (m) DST. Question 26, TEMPERATURE OF STACK (deg C) TST. 3.26 3.27 Question 27, VELOCITY OF EFFLUENT (m/sec) VST. 3.28 Question 28, RELATIVE DENSITY OF EFFLUENT RDE. 3.29 Question 29, FROST PROFILE EXPONENT FRO.
- This is the log-log slope of the wind profile.
- 3.30 Question 30, HEAT RELEASED (cal) HRL.
- 3.31 Question 31, CLOUD RADIUS (m) CRD.
- Question 32, STATION LATITUDE and LONGITUDE (deg) 3.32 SLA and SLO.
- 3.33 IMM. IDD, and HRS. Question 33, MONTH, DAY, HOUR

The first three letters of the month, the day as two digits, and the standard military time as four digits are entered here (JAN,01,1200). The output of the month will be displayed as a numeric (1-12) and, if the month is changed in the ALL statement, it is entered as a numeric (IMM 4). The first time the S option is used for stability the program will request the year. This is done to compute the vernal equinox for the year specified.

Question 34, CLOUD COVER (1/10), CLOUD HEIGHT (ft) CCT and CHT. 3.34

This is the number of tenths of coverage (overcast = 10) and the cloud height in feet.

- 3.35 Question 35, SUN ELEVATION ANGLE (deg) SUN. This is entered as degrees above the horizon.
- 3.36 Question 36, WOODS TYPE WOO.

This is entered as a two-digit code as defined in the following table:

WOO = DWDeciduous, winter Mixed, winter MW CF Coniferous forest MS Mixed, summer RF Rain forest

DISCUSSION 4.

4.1 Program Input Rescan.

When the program forms its first input string of questions, it may copy data on munitions, agents, and locations from tables for input to the

downwind distance calculator (DDS or CDS). Also the EVAP, STAB, or WOODS subroutines may be called in this process. Once the program has executed and returned to "ALL OTHER INPUT" (question 15), all of these values are retained and the same problem would be rerun if the word ALL is input again at this point.

The RST option will reinitialize the program and establish a new input string for the next run. However, if the next run is similar to the first, the user can take advantage of the data already present and input only the changes. These changes can include any of the variables listed in Table 4.

Many of these variables will affect the data copied from the tables in the first scan and thus a rescan of the input phase is needed. The variables that may require input rescan are listed below.

AGN	DOW	IMM	PMM	SLO	TIM
ARE	FMV	INP	QQQ	STB	TMP
BPT	FMW	LOC	ŘĚĽ	SUN	VAP
CCT	HRS	MUN	SEA	SUR	WND
CHT	IDD	NMU	SLA	TEV	WOO

4.2 Rescan and the HLD Command.

Although the automatic table look-up feature is designed to aid the user, there are conflicts that must be understood. The table look-up is repeated with each rescan. Thus, a variable value can be stored in the ALL statement but, if the combination of inputs causes the input rescan, the value may be overwritten by a value from the tables. See Section 2.2 and 3.15 for further discussion.

4.3 Concentration Options.

The downwind concentration, CDS, is selected when values of 1, 2, or 3 are assigned to IMA in the ALL question. When any of these values of IMA are input, a message (DEFINE NCI) will be printed. This is to remind the per that the concentrations of interest must be specified since there are no tablar values for concentration. When a value is assigned to NCI, the instruction INPUT: CI()S will be printed. The values of CI should be in ascending order and the number of entries must agree with NCI. If NCI is not defined, the program will use any numbers left from a dosage run as if they were concentrations, or the program will return to ALL as explained in Section 4.4 if no dosage has been defined.

When concentration is selected by setting IMA to 1, 2, or 3, the program automatically places a hold on NCI to prevent the rescan procedure from overwriting the concentrations of interest with the tabular dosages. This hold is released when IMA is again set to zero. (A hold on either NDI or NCI will bypass the table lookup for dosages of interest.)

4.4 DEFINE NDI or NC1.

If the program attempts to enter the downwind distance calculators (DDS or CDS) without a defined dosage or concentration of interest, the demand DEFINE NDI or DEFINE NCI is printed and control returned to the ALL statement.

4.5 <u>Multiple Munitions</u>.

If a calculation is being made for two or more munitions functioning or being spilled at the same location, the source strength can be increased in unit multiples by assigning a number to NMU in the ALL statement. This approach, of course, assumes that all munitions are the same and that agent is released in the same manner. Thus, the scenario for a pallet of M55 rockets will still require two runs, one for the munitions that function and one for those that leak. However, the number of munitions in each release may be entered directly as NMU. Although NMU is displayed as an integer, the value may be entered as a real number or fraction. In this manner, adjustments may be made for partial spills or partial releases. When there is no fractional part, NMU is displayed in the header as an integer. When there is a fractional part, the header will list numbers less than 10 and greater than .009 with two decimal digits.

4.6 Wind Speed in Woods.

The meteorological parameters given in DODESB TP No. 10 for wooded areas indicate a reference wind speed outside the woods as well as the transport wind within the woods. The program is designed to convert from reference (outside) to transport (inside) so that the normal input would be the reference wind speed. However, provisions are made to enter the transport speed directly if this is known. This signal to the program is to specify the wind speed as negative. Thus, if you wish to specify the in-woods wind speed, enter the number as negative.

4.7 Units Conversion.

Subroutine UNT permits the conversion of units for many of the variables. The system is designed to be invisible to the user who enters the conventional metric units requested. When "strange" units are used, the first two characters of the space that would normally be numeric are replaced with two alpha characters that identify the input. This system is operable on all input questions that contain only one numeric variable. The units that may be converted and the two character codes that will initiate this change are given in the following table:

								UNIT CO	00	<u> </u>						
ATM	=	AT	SQ	FT	•	SF		LB		LB	MB	=	МВ	GAL	-	GL
BAR	=	BR	•	GM	=	GM		М	=	MT	0Z	=	0 Z	L		LT
CM		CM		HR	u	HR		M/MIN	=	PM	SEC	=	SC	ML	×	ML
DEG F	=	DF		IN		IN	C	M/MIN		M3	TON(L)	=	TL	PΤ	×	PT
FT	=	FT		KT		KT		MI/HR	*	MH	ŤOŇ	*	TN	QΤ	=	QT

It should be noted that the questions in which the units can be converted include question 15 (the ALL question). Thus, the variables that appear in the "multi-numeric" questions, which cannot be converted directly, may still be converted in the ALL question by reentering the variable name, a space or comma, the two-character conversion code, and the numeric value in the "strange" units.

Whenever the units conversion function is employed, the program will list the input units, the output units, and the converted numeric value. If

meters are input as the conversion code (MT), this will be converted to feet. The only place where this conversion is appropriate would be in the conversion of cloud height, if it were known in meters. There is no internal check to assure that the conversion is appropriate for the variable. It is thus the responsibility of the user to assure that the final units agree with the input requested. Conversion errors may be corrected by repeating the input in the ALL question.

If question marks are entered for the conversion code or an undefined code is used, the units code table given above will be listed. The program will then repeat the input question. For the ALL question, no variable name is listed but control remains in the ALL loop so that the variable may be reentered on the next cycle.

The last five unit codes (Gal, 1, ml, pt, qt) are measures of volume. These are converted to weights by using the density of the substances. The densities are stored for the 17 substances in the agent list. For other substances the program will request the density.

4.8 Calculations During Input.

When the EVP option of release is used, the EVAP3 subroutine is called during input to compute the airborne source. Each time this subroutine is executed, two lines are output to summarize the results. The surface code is listed and then values of the following:

)

EVP	Evaporation rate from puddle (mg/min-sq m
AREA	Area of puddle (sq m)
VPR	Vapor pressure of liquid (mm Hg)
Q	Initial quantity spilled (mg)
Q̈́'	Airborne source (mg)
ŤΕV	Time of evaporation (min)

One line is output each time the stability selector is called. The computed values are as follows:

SR Sunrise (standard military time)
SS Sunset
AE Elevation angle of sun above the horizon (deg)
STAB Stability category

4.9 Igloo Fires.

Subroutine IGL has been added to D2PC programs released after June 1986. This subroutine contains the unit-weighting factors for the igloo fire scenario for the M55 containing either GB or VX. The subroutine is called by specifying the method of release as IGL. The number of rounds is specified with NMU in the ALL statement. The program will display the three release intervals employed for GB and the single interval used with VX.

4.10 Still Air Evaporation.

In program D2 and in the early version of D2PC, the still air evaporation option could be called only by specifying a small wind speed. In the version released after June 1986, a release option, EVS, has been added to treat a spill within an enclosure where the vapor would then escape to the outside. When EVS is specified, the still air model is used to determine the amount that evaporates within the enclosure, but the wind speed specified by the user is then used to compute the downwind travel and dosage. This avoids having to run the program first as an evaporation source with a small wind speed to determine the source and then again, as a semicontinuous source with the outside wind speed to determine the transport.

5. ERROR MESSAGES

Most of the error messages are self explanatory. A few refer back to the methodology and some additional comments are given below.

DEFINE HML - Define the height of the mixing layer. This message occurs when the table look-up has not defined a value for HML.

DEFINE NCI - A reminder that the number of concentrations of interest must be defined

DEFINE NDI - A reminder that the number of dosages of interest must be defined

<u>DEFINE NQI</u> - A reminder that Q is changed by defining NQI

DHJ NOTE: UNSTABLE MET CONDITIONS - Jet plume note: Unstable meteorological conditions. This a reminder that the jet plume model proposed by Briggs-Thomas is limited to stable and neutral conditions.

DHS NOTE: VS/UZ LT 4 - Jet plume note: The stack velocity divided by the wind speed is less than 4. The model is derived for greater than 4.

DHH/DHB/DHBT Note: STK TMP LESS THAN AIR TMP - Note for Holland, Briggs, and Briggs-Thomas plume models: Stack temperature is less than air temperature. A reminder that the models are derived for a positive difference (T_S-T_a) .

 $\frac{\text{FUMIGATION}}{66, \text{ Appendix A}}. \text{ It should be noted that the distance computed by this model is not the distance from the initial source but the distance from the cloud at the time the ground level inversion breaks up.}$

HEIGHT DEFINED FOR STABLE CONDITIONS ONLY - A reminder that the model applies only for neutral and stable conditions

MUNITION-AGENT NOT DEFINED - This message occurs when the combination given is not in the standard table.

Q' EQ ZERO - The airborne sources, Q', is zero. Control returns to the ALL statement.

STILL AIR - This message is a reminder that the still air model for evaporation has been used.

TMP GREATER THAN BOILING POINT - Temperature greater than boiling point of liquid. The program will continue with the total amount spilled as the airborne source.

TMP LESS THAN FREEZING - Temperature less than freezing. Q' is set to zero and control is returned to the ALL statement.

6. OUTPUT

To the first of the first of the second for the second of the second of

Output is controlled by the three variables NOV, OPO, and OPC, which are defined in Table 3. The options for NOV were discussed in Section 3.1. The long listing displayed when NOV equals 2 or 3 will become tedious after the user has gained some experience with the program. A shift to one is recommended as soon as the options can be recognized by the operator.

During execution the first line of output comes from the MASTER program and is essentially a summary of the input information. The next two lines come from subroutine DDS and list the source (Q), the release time (TS), the release height (HTS), the height of the mixing layer (HML), and the source sigmas (SXS, SYS, SZS). When the default value of OPO is used, the program will execute and list the distance to each of the three response levels, 1 percent lethality, no deaths, and no effects. If other dosages are specified by the operator, these dosages will be listed with each estimated distance.

When the 2-minute correction is used with estimates for nerve agents, an extra header line (w/2-min correction) is displayed; when this correction is dropped, a (w/o 2-min correction) line is shown.

Options 1 and 2 will also cause the diffusion parameters to be listed as lines 4 and 5. These lines will also list XY and XZ, which are the offset distances for sigma -y and sigma -z that are given in the methodology as parameters B and C. The last output at the end of line 5 (OPO = 1 or 2) is the wind speed used in the calculation. This may differ from the wind speed given in the first line when the woods parameters are selected.

The following is a list of definitions for the output under options 1 and 2:

X Downwind distance (m)
DP Peak dosage (mg min/m³)

Peak dosage with 2-minute correction Effective dosage (mg \min/m^3) DP2

ED

ED2 Effective dosage with 2-minute correction

RF Fraction reflected from mixing layer

2MF Two-minute correction factor

EDI Inhalation component of ED2

EDS Skin deposition component of ED2

When OPO option 3 is used, a header is printed for the contour dosages and then the contour half-widths.

7. SUMMATION OF DOSAGE DISTRIBUTION

A provision has been made to sum the dosage at each downwind distance so that the hazard distance from multiple sources may be output directly. This process, of course, is limited to sources of the same agent.

To utilize this feature, three control commands have been added to the ALL question:

> SMC Clear sum D(X)

SMD Add current D(X) to sum D(X)

SMP Print X(DI) from sum D(X) plus current D(X)

Sum D(X) and current D(X) are each 51 element tables that store the dosage for each distance and thus define the downwind distribution. With each run, the dosages generated are stored as the current D(X).

The sum D(X) table will initially be cleared to zero and, if the SMD command is executed, this will store the current D(X) values in the sum D(X)table. After the changes for the next distribution have been input, the next run will generate and store a new current D(X), leaving the previous values stored by SMD in the sum D(X) table.

If the downwind distances are to be based on the sum of these two distributions, the second run should be preceded with the command SMP, which will tell the program to add the value in the sum D(X) table to the current value in estimating the distance. The SMP command does not change the values stored in either table.

Repeated use of the SMD command will continue to add the dosages in the current D(X) table into the sum D(X) table. The sum D(X) table is cleared with the command SMC.

Thus, the sum D(X) table is controlled by SMC and SMD, and the current D(X) table is changed only by executing a new run. When a run is preceded by SMP, the downwind distance will be based on the current D(X) plus the sum D(X)values. The SMP command is cleared each time the program gets to the ALL question, so the SMP command must be repeated if the command is given before a rescan.

The user is cautioned to assure that the dosages from the previous run extend beyond the dosages of interest in the final run. For example, if the

first run is terminated at the 1 percent distance, then the dosage will only be stored to the next regular distance. If the sum would extend the curve beyond this distance, then the remaining portion of the first curve will be missing and the answer would be incorrect.

The recommended procedure is to define a small cutoff dosage for the first run using NDI in the ALL question. In this manner the dosages will be stored beyond the distance estimated with the sum. The storage table for the dosages is dimensioned at 51 and thus can store dosages to a distance of 900 km.

In operation, the current D(X) table always retains the dosages of the last run. The SMD command does not clear (or change) the current D(X) table. The SMP command leaves the current D(X) table with the last component generated. This is not the sum on which the distances are based. This component can be regenerated and printed (OPO = 1) by repeating the run without the SMP command.

In this version of D2PC, the intravenous doses that were output for VX deposition are converted to effective dosages so that these can be added directly in the summation process. These are converted for a breathing rate of 25 $1/\min$. If another rate is needed, the breathing rate, BRT, should be changed in the ALL question.

8. VAPOR DEPLETION

In response to a request from the U.S. Army Toxic and Hazardous Materials Agency (THAMA), a vapor depletion option has been written into the program. (This was done to support Oakridge National Laboratory in their support of the M55 demilitarization effort.)

The approach chosen is based on the current open literature and has not as yet been reviewed or approved as a part of TP 10 by the DOD Explosive Safety Board.

The vapor depletion option is controlled by the indicator VDP, which can be defined in the ALL question. Vapor depletion is called by setting VDP to one and is released by setting it to zero. (The default value is zero.)

The vapor depletion is computed as a reduction of the source strength by computing the mass of vapor that would have been lost to the distance of interest. This is done by computing a deposition velocity as a function of wind speed, stability, and roughness length and then multiplying this by the integrated area-dosage (or area-concentration) to the point of interest. The fraction remaining is listed before each downwind estimate. Comments on the computer implementation of this process are given in Appendix B. The methodology is presented, along with the source references, in Appendix C.

Blank

APPENDIX A

Blank

APPENDIX A

METHODOLOGY

1. INTRODUCTION

This appendix presents the methodology for the atmospheric diffusion, plume rise, and liquid evaporation employed in this program. The diffusion methodology is limited to estimating the axial dosage or concentration at ground level. This restriction is appropriate for hazard distance estimates.

TOTAL DOSAGE MODELS

The basic equation for computing the axial dosage from a point or virtual point source is given by

$$D(x) = \frac{Q}{60\pi\sigma_y\sigma_zU} \left[e^{-1/2} (H/\sigma_z)^2 + \sum_{i=1}^{\infty} \left(e^{-1/2((2iH_m + H)/\sigma_z)^2} + e^{-1/2((2iH_m - H)/\sigma_z)^2} \right) \right]$$

$$+ e^{-1/2((2iH_m - H)/\sigma_z)^2}$$
(A-1)

where

D(x) = axial dosage at the point x downwind (mg min/m³),

Q = source strength (mg),

 σ_y or $\sigma_y(x) = \text{standard deviation of crosswind concentration at } x (m),$

 σ_z or $\sigma_z(x)$ = standard deviation of vertical concentration at x (m),

U = mean wind speed (m/sec).

 H_{m} = height of the surface mixing layer (m),

H = effective height of the source (m).

The standard deviations, $\sigma_y(x)$ or $\sigma_z(x)$, or σ_z , are computed for the appropriate distance, x, as follows:

$$\sigma_{y}(x) = \sigma_{yr} \left(\frac{x+B}{x_{yr}}\right)^{\alpha}$$
 (A-2)

$$\sigma_z(x) = \sigma_{zr} \left(\frac{x+c}{x_{zr}} \right)^{\beta}$$
 (A-3)

where

 σ_{yr} , σ_{zr} = reference sigma values at the distances x_{yr} , x_{zr} , respectively (m),

 x_{vr} , x_{zr} = reference distances (100 m),

 α = expansion coefficient in the crosswind direction (dimensionless),

 β = expansion coefficent in the vertical (dimensionless),

B = virtual distance calculated for volume source (m)

$$= x_{yr} \left(\frac{\sigma_{ys}}{\sigma_{yr}} \right)^{1/\alpha}$$

 σ_{ys} = standard deviation of initial source in the crosswind direction (m),

C = virtual distance calculated for volume source (m)

$$= x_{sr} \left(\frac{\sigma_{ss}}{\sigma_{sr}} \right)^{1/\beta}$$

 σ_{ZS} = standard deviation of initial source in vertical (m).

The basic total dosage model simplifies somewhat when the clouds become trapped under a mixing layer cap and eventually result in a cloud with a uniform distribution of concentration in the vertical. Mathematically, this occurs as the infinite series

$$e^{-1/2(H/\sigma_z)^2} + \sum_{i=1}^{\infty} \left(e^{-1/2((2iH_m + H)/\sigma_z)^2} + e^{-1/2((2iH_m - H)/\sigma_z)^2} \right)$$

approaches

for sufficiently large x. This new formulation of the total dosage model

$$D(x) = \frac{Q}{60\sqrt{2\pi}\sigma_y H_m U}$$
 (A-4)

is commonly called the "box model."

Appendix A

When the initial source is uniform over a line of finite length, L, in the crosswind direction (y), the ground level total dosage along the cloud's axis (the line starting at the midpoint of L in the direction of the wind) is given by

$$D(x) = \frac{\sqrt{2} Q}{60\sqrt{\pi} L \sigma_z} U \left(erf \left(\frac{L}{2\sqrt{2}\sigma_y} \right) \right) \cdot \left[e^{-1/2(H/\sigma_z)^2 + \frac{L}{2\sqrt{2}\sigma_y}} \right) \cdot \left[e^{-1/2((2iH_m - H)/\sigma_z)^2 + \frac{L}{2\sqrt{2}\sigma_y}} \right]$$

$$\left[\left(e^{-1/2((2iH_m + H)/\sigma_z)^2 + \frac{L}{2\sqrt{2}\sigma_y}} \right) \right]$$
(A-5)

where

L = line length (m),

erf(v) = error function evaluated at v

$$= \frac{2}{\sqrt{\pi}} \int_0^V e^{-w^2} dw.$$

All others as defined above.

3. DIFFUSION PARAMETERS

The set of diffusion parameters used in the derivation of the tables and graphs presented in this handbook was taken directly from Technical Paper No. 10.1 Table A-1 gives the required reference sigmas and expansion coefficients.

Table A-1. Recommended Values of Parameters

$$(x_{yr} = x_{zr} = 100 m)$$

Stability category	σ _{yr} (2.5 sec) (m)	σ _{yr} (10 min) (m)	osr (m)	a	β
٨	9.0	27.0	14.0	1.0	1.4
3	6.33	19.0	11.0	1.0	1.0
С	4.8	12.5	7.5	1.0	0.9
ם	4.0	8.0	4.5	0.9	0.85
E	3.0	6.0	3.5	0.8	0.8
F	2.0	4.0	2.5	0.7	0.75

4. TWO-MINUTE CORRECTION MODEL

This methodology² is required to implement the changes in effective dosages of GB and VX as a function of exposure time in agent clouds of nonuniform concentration. Since dosage is a function of exposure time, the degree of hazard will be reduced in those accidents where the vapors are evolved slowly over a substantial time as compared with nearly instantaneous releases. This is a result of a nonlinear relationship between dosage, exposure time, and the expected physiological response.

The basic model for calculating ground level partial dosages is as follows:

$$D(x;\Delta\theta) = \frac{Q}{60\pi\sigma_{y}\sigma_{z}U} \left[e^{-1/2(H/\sigma_{z})^{2} + \frac{\pi}{2}} \left(e^{-1/2((2iH_{m} + H)/\sigma_{z})^{2}} \right) \right]$$

$$+ e^{-1/2((2iH_m - H)/\sigma_g)^2}$$
 1/2 $\left[erf \left(\frac{x - U\theta_1}{\sqrt{2}\sigma_g} \right) - erf \left(\frac{x - U\theta_2}{\sqrt{2}\sigma_g} \right) \right]$ (A-6)

where

$$\Delta \theta$$
 = time interval of interest (min),

 θ_1 , θ_2 = beginning and end of time interval as measured from the release time.

 σ_X or $\sigma_X(x)$ = standard deviation of the concentration in the x direction (m).

All others as defined above.

For an instantaneous source, dosage buildup at a point as a function of time is readily determined from equation A=6. For releases occurring at a uniform rate, $\Delta Q/\Delta t$, for a time period from the initiation of emission, $\theta_0(=0)$ to 0s, computation of the dosage for an arbitrary interval, $\Delta \theta = \theta_2 = \theta_1$, requires application of the more complicated expressions:

$$D(x;\Delta\theta) = K(T_5 - T_2 + T_4) \qquad \text{for } \theta_8 > \theta_2 > \theta_1$$

$$D(x;\Delta\theta) = K(T_1 - T_2 - T_3 + T_4) \qquad \text{for } \theta_2 > \theta_1 > \theta_2 \qquad (A-7)$$

where

$$K = \frac{\Delta Q/\Delta t}{3600 \cdot 2\pi\sigma_{y}\sigma_{z}U} \left[e^{-1/2(H/\sigma_{z})^{2}} + \sum_{i=1}^{T} \left(e^{-1/2((2iH_{m} + H)/\sigma_{z})^{2}} + e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}} \right) \right]$$

$$+ e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}} \right]$$

$$T_{1} = (\theta_{2} - \theta_{s} - \pi/u) \text{ erf } \left\{ \frac{\pi - u(\theta_{2} - \theta_{s})}{\sqrt{2}\sigma_{x}} \right\} - (\theta_{1} - \theta_{s} - \pi/u)$$

$$= \text{erf } \left\{ \frac{\pi - u(\theta_{1} - \theta_{s})}{\sqrt{2}\sigma_{x}} \right\}$$

$$T_{2} = (\theta_{2} - \pi/u) \text{ erf } \left\{ \frac{\pi - u\theta_{2}}{\sqrt{2}\sigma_{x}} \right\} - (\theta_{1} - \pi/u) \text{ erf } \left\{ \frac{\pi - u\theta_{1}}{\sqrt{2}\sigma_{x}} \right\}$$

$$T_{3} = \frac{\sqrt{2}\sigma_{x}}{\sqrt{\pi}u} \left[\exp \left\{ -\left\{ \frac{(\pi - u(\theta_{2} - \theta_{s}))^{2}}{2\sigma_{x}^{2}} \right\} - \exp \left\{ -\left\{ \frac{(\pi - u(\theta_{1} - \theta_{s}))^{2}}{2\sigma_{x}^{2}} \right\} \right]$$

$$T_{4} = \left[\frac{\sqrt{2}\sigma_{x}}{\sqrt{\pi}u} \text{ exp } -\left\{ \frac{(\pi - u(\theta_{2})^{2})^{2}}{2\sigma_{x}^{2}} \right\} - \exp \left\{ -\left\{ \frac{(\pi - u(\theta_{1})^{2})^{2}}{2\sigma_{x}^{2}} \right\} \right]$$

$$T_{5} = (\theta_{2} - \theta_{1}) \text{ erf } \left\{ \frac{\pi}{\sqrt{2}\sigma_{x}} \right\}$$

If $\theta_1 < \theta_s < \theta_2$, the total time period is partitioned into the segments θ_1 to θ_s and θ_s to θ_2 . The dosage contribution for each time segment is derived separately from the appropriate form of the equation and the results added. Equation A-6 is also readily adapted to cases of variable rate of agent generation, provided the total emission time can be divided into a set of intervals for each, where a constant $\Delta Q/\Delta t$ can be assumed. The contribution of a "source segment," as defined by $\Delta Q/\Delta t$ over a given time interval, to the total dosage accumulated during $\Delta \theta$ may be computed independently for each such segment from equation A-6.* The sum over the set of values so obtained is the total dosage of interest.

^{*}In applying equation A-6, it should be noted that agent emission is defined in the expressions as occurring from the origin (θ_0 = 0) of the time scale to θ_s . For cases involving a series of uniform generation rates, appropriate translations of the time scale (i.e., agent emission from θ_a to θ_b) will be necessary.

The expansions for $\sigma_{\boldsymbol{y}}$ and $\sigma_{\boldsymbol{z}}$ are noted in section 2 of this appendix.

Values for σ_X may be computed from a study of long-distance cloud travel, which was done by Halvey* in 1973. This work resulted in the following relationship:

$$\sigma_{\rm X}$$
 = .1522 x .9294

It follows from the dosage response curves² that an effective dosage for an exposure time t (expressed in minutes) can be obtained by multiplying the corresponding reference "2-minute" value by the factor

$$M = 0.827 t0.274$$
 (t> 2 minutes). (A-8)

A rationale was developed for the computation of the multiplier M by means of a numerical procedure that allows for discrete changes in agent concentration as the cloud moves over a ground location. In essence, a "pseudo" exposure time is determined through a sequence of adjustments for successive time increments covering cloud passage. This "pseudo" exposure time, which must be 2 minutes or greater for equation A-7 to be applicable, can be considered essentially as an integrated average. The precise sequential mathematical procedure is as follows:

let

 $t_1 = clock time in minutes,$

 τ_i = "pseudo" exposure time in minutes,

 ΔD_{i} = dosage accumulation in interval i,

 $D_i = cumulative dosage to time t_i$,

 $D_{01} = 2$ -minute reference dosage.

Subscript m denotes the value computed from transport and diffusion mode.

Subscript e denotes the extrapolated value as indicated below:

1st Interval: Select clock time interval $t_0 \rightarrow (t_1 - t_0) > 2$ minutes

- a. Determine D_{1m} for interval t_1 t_0 from transport and diffusion model,
- b. Set $\tau_1 = t_1 t_0$,

^{*}Halvey, David D. Estimation of Cloud Length for Long Distance Travel. Unpublished data, Operations Research Group, Egewood Arsenal, Maryland, July 1973. UNCLASSIFIED.

c. Compute.

$$D_{01} = \frac{D_{1m}}{(0.827) (\tau_1)^{0.274}}$$

2d Interval: Select clock time interval $t_1 \rightarrow t_2$

- a. Determine ΔD_{2m} for interval t_2 t_1 from transport and diffusion model.
- b. Compute (1) $D_{2m} = D_{1m} + \Delta D_{2m}$,

(2)
$$D_{2e} = 0.827 D_{01} (\tau_1 + t_2 - t_1)^{0.274} - (\tau_1)^{0.274}$$
,

- c. Compare ΔD_{2m} with ΔD_{2e}
 - (1) If $\Delta D_{2m} = \Delta D_{2e}$, sat $\tau_2 = \tau_1 + t_2 t_1$,
 - (2) If $\Delta D_{2m} > \Delta D_{2e}$, compute
 - (a) $D_{2e} = D_{1m} + \Delta D_{2e}$

(b)
$$\tau_2 = \left[\frac{D_{2e}(\tau_1 + t_2 - t_1)^{0.274} + (\Delta D_{2m} - \Delta D_{2e})(t_2 - t_1)^{0.274}}{D_{2m}}\right]^{\frac{1}{0.274}}$$

(3) If $\Delta D_{2m} < \Delta D_{2e}$, compute

$$\tau_{2} = \begin{bmatrix} \frac{\Delta D_{2m}}{t_{2} - t_{1}} & (t_{2} - t_{0}) & (\tau_{1} + t_{2} - t_{1}) & + \left[D_{1m} - \frac{\Delta D_{2m}}{t_{2} - t_{1}} (t_{1} - t_{0})\right] & \tau_{1} & D_{2m} \end{bmatrix}$$

d. Compute
$$D_{02} = \frac{D_{2m}}{0.827(\tau_2)^{0.274}}$$
.

General Case: Select clock time interval $t_{j-1} - \longrightarrow t_j$

a. Determine Δd_{im} for interval $t_1 - t_{i-1}$ from transport and diffusion model,

b. Compute

(1)
$$D_{im} = D_{(i-1)m} + \Delta D_{im}$$

(2) $\Delta D_{ie} = 0.827 D_{0(i-1)} \left[(\tau_{i-1} + t_i - t_{i-1})^{0.274} - (\tau_{i-1})^{0.274} \right]$

c. Compare ΔD_{im} with ΔD_{ie}

(1) If
$$\Delta D_{1m} = \Delta D_{1e}$$
 set $\tau_1 = \tau_{1-1} + t_1 - t_{1-1}$,

(2) If
$$\Delta D_{1m} > \Delta D_{1e}$$
, compute

(a) Die =
$$D(i-1)m + \Delta Die$$

(b)
$$\tau_{i} = \left[\frac{D_{ie}(\tau_{i-1} + t_{i} - t_{i-1})^{0.274} + (\Delta D_{im} - \Delta D_{ie}) (t_{i} - t_{i-1})^{0.274}}{D_{im}} \right]^{\frac{1}{0.274}}$$

(3) If D_{1m} < D_{1e}, compute

$$\tau_{i} = \begin{bmatrix} \frac{\Delta D_{im}}{t_{i} - t_{i-1}} (t_{i} - t_{0}) (\tau_{i-1} + t_{i} - t_{i-1})^{0.274} + \left[D_{(i-1)m} - \frac{\Delta D_{im}}{t_{i} - t_{i-1}} (t_{i-1} - t_{0}) \right] \frac{1}{\tau_{i-1}} \\ D_{im} \end{bmatrix}$$

d. Compute
$$D_{01} = \frac{D_{im}}{0.827(\tau_1)^{0.274}}$$
.

For n increments, the reference 2-minute dosage D_{0n} is the value used in constructing the generalized curves for GB and VX respiratory effects.

In using the above procedure, three precautions must be observed. Firstly, τ_1 cannot be permitted to decrease below 2 minutes. Although such occurrence would generally be unlikely, the possibility should be recognized in the computational procedure. Secondly, D_{01} must be nondecreasing for successive increments. If $D_{0(k+1)} < D_{0k}$, as could occur through consideration of very low dosages produced by the trailing edge of a cloud over an extended time period, it is recommended that $D_{0(k+1)}$ be set equal to D_{0k} before proceeding to the next interval. Thirdly, since it is not apparent that the maximum value of D_{0i} will always exceed the actual peak 2-minute accumulation during cloud passage, a numerical comparison should be made, with the larger value obviously accepted as the basis for hazard-distance estimation.

5. CONCENTRATION MODELS

The mathematical model representing the maximum ground level concentration from an instantaneous point or virtual point source at a distance x is given by

$$\chi(x) = \frac{Q}{\sqrt{2\pi^{3/2}\sigma_{x}\sigma_{y}\sigma_{z}}} \begin{bmatrix} e^{-1/2(H/\sigma_{z})^{2}} + \Sigma \left(e^{-1/2((2iH_{m} + H)/\sigma_{z})^{2}} + e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}}\right) \\ + e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}} \end{bmatrix}$$
(A-9)

where

 $\chi(x)$ = concentration at the point x (mg/m³).

All others as defined above.

For the continuous case, differentiation is made between the purely continuous release and that of the quasi-continuous release. In the purely continuous case, the emission time is assumed to be sufficiently large so that a steady-state concentration is reached at each point downwind. The concentration 3 from a continuous point source is numerically equal to the dosage from an instantaneous source whose total emission is numerically equal to the rate of the continuous source, $\Delta Q/\Delta t$, thus,

$$\chi(x) = \frac{\Delta Q/\Delta t}{60\pi\sigma_{y}\sigma_{z}U} \left[e^{-1/2((2iH_{m} + H)/\sigma_{z})^{2}} + e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}} + e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}} \right]$$
(A-10)

where

 $\Delta Q/\Delta t = rate of emission (mg/min).$

All others as defined above.

For the quasi-continuous releases, 4 the maximum axial concentration at a distance x is given by

$$\chi(x) = \frac{\Delta Q/\Delta t}{60\pi\sigma_y \sigma_z U} \left[e^{-1/2(H/\sigma_z)^2} + r \left(e^{-1/2((21H_m + H)/\sigma_z)^2} \right) \right]$$

$$\chi(x) = \frac{\Delta Q/\Delta t \ t_s}{\sqrt{2}\pi^{3/2}\sigma_x\sigma_y\sigma_z} \left[e^{-1/2((2iH_m - H)/\sigma_z)^2} + \sum_{i=1}^{\infty} \left(e^{-1/2((2iH_m + H)/\sigma_z)^2} + e^{-1/2((2iH_m - H)/\sigma_z)^2} \right) \right] \text{ for } x > X_c.$$

$$(A-11)$$

where

$$X_c = \exp \left[2\pi \left\{ (t_8 \cdot 60 \cdot u) / 0.1522 \cdot \sqrt{2\pi} \right\} / 0.9294 \right],$$
ts = release time (min).

All others as defined above.

For a finite line source, either instantaneous or continuous, where the release is uniform over a line of length, L, in the crosswind direction, the axial concentration is given by

$$\chi(x) = \frac{Q}{L\sigma_{x}\sigma s_{z}} \operatorname{erf}\left(\frac{L}{2\sqrt{2}\sigma_{y}}\right) \left[e^{-1/2(H/\sigma_{z})^{2} + \sum_{i=1}^{n} \left(e^{-1/2((2iH_{m} + H)/\sigma_{z})^{2}} + e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}}\right)\right]$$

$$+ e^{-1/2((2iH_{m} - H)/\sigma_{z})^{2}}\right]$$
(A-12)

when all variables are as defined above.

EVAPORATION MODEL

The evaporation rate model 5 is reproduced here as it was originally presented in ORG report 40.2. The only change in the methodology has been the conversion to metric units for consistency with this handbook. The procedure is as follows:

Determine the dimensionless Reynold's number, $N_{\mbox{\scriptsize Re}}$ for the airflow from the equation

$$N_{Re} = \lambda \cdot U \cdot \rho / \mu \times 10^4 \tag{A-13}$$

where

 $\lambda =$ downwind length of the puddle (m),

U = wind speed (m/sec),

 ρ = density of the air (gm/cm³).

 μ = viscosity of the air (poise(gm/cm · sec)).

The density of air in gm/cm³ can be determined by

$$\rho = \frac{0.35232}{7} \cdot P \tag{A-14}$$

where

$$T = temperature (°K),$$

The viscosity of air can be determined from

$$\mu = e^{(4.36 + .002844 T)} \times 10^{-6}$$
 (A-15)

 $\,$ From the Reynolds number, calculate the mass transfer factor, $j_m,$ as follows:

$$j_m = 0.664 N_{Re}^{-0.5}$$
 for $N_{Re} < 20,000$
 $j_m = 0.036 N_{Re}^{-0.2}$ for $N_{Re} > 20,000$ (A-16)

With this, the mass transfer coefficient, Kg, is calculated by

$$K_g = G_m \cdot J_m \cdot (\mu/\rho d)^{-2/3}$$
 (A-17)

where

 K_g = mass transfer coefficient (gm moles/sec \cdot cm²),

 G_m = molar mass velocity of air (gm moles/sec • cm²),

 $(\mu/\rho d)$ = Schmidt number (dimensionless),

 $d = diffusivity (cm^2/sec)$.

The molar mass velocity of air can be detemined by the formula

$$G_{\rm m} = \frac{U \cdot \rho}{M_{\rm A}} \times 10^2 \tag{A-18}$$

where M_A = molecular weight of air (gm/gm mole).

The diffusivity of air, d, may be computed from

$$d = 0.0043 \frac{T^{3/2}}{P(V_A^{1/3} + V_L^{1/3})^2} \cdot \left(\frac{1}{M_A} + \frac{1}{M_L}\right)^{1/2}$$
(A-19)

where

T = temperature (°K),

P = ambient pressure (atm),

 V_A = molecular volume of air at normal boiling point (cm³/gm mole),

V_L = molecular volume of liquid at normal boiling
 point (cm³/gm mole),

 $M_L = molecular weight of liquid (gm/gm mole).$

Finally the evaporation rate, E, is defined by

$$E = K_g \cdot M_L \cdot P_L/(760 \cdot P) \cdot 6 \times 10^5$$
 (A-20)

where

E = evaporation rate of liquid (gm/m² min)

P₁ = vapor pressure of liquid at liquid air interface (mm Hg).

7. EVAPORATION RATE INTO STILL AIR

The model for evaporation in still air is reported in change 3 (June 1980) to TPlO. This methodology is to be used when the incident occurs within a closed building or other confined location that precludes the movement of air during the evaporation of the toxic liquid. The evaporation rate into still air is calculated using the following semiempirical equation: 6

$$E_8 = 292(1 + 0.51 \text{ Re}^{1/2} \text{ Sc}^{1/3}) \ln \left(\frac{1}{1-P_V}\right) \frac{M_L}{T} d \frac{\lambda}{2}$$
 (A-21)

where

Es = evaporation rate (gram/min)

 R_e = Reynolds number (using a wind speed of .03 m/sec)

Sc = Schmidt number

P = ambient pressure (atmospheres)

 $P_v = vapor pressure of liquid (atmospheres)$

ML = molecular weight of liquid

T = ambient temperature (°K)

d = diffusivity of air (cm²/sec)

 $\lambda = diameter of spill (meters)$

with

$$Re = \frac{0.03 \ \lambda \ \rho}{\mu} \times 10^4 \tag{A-22}$$

P = density of vapor (g/cm³) μ = viscosity of vapor (g/cm/s)

$$\mathbf{s_c} = \frac{\mu}{\alpha d} \tag{A-23}$$

In calculating the Reynold's number, the effect of the agent vapor on the air viscosity and density will be ignored.

$$\rho = \frac{.3482}{T}$$
 (for water vapor pressure of 25 mm Hg) (A-24)

If the evaporation is into air with a molecular weight of 29 and the liquid has a molecular weight between 27 and 278, then the diffusivity of the liquid's vapor, following the Wilke-Lee equation, can be stated as follows:

$$d = \frac{.00205 r^{3/2} \sqrt{\frac{1}{29} + \frac{1}{M_L}}}{p \sigma^2_{12} \Omega_D}$$
 (A-25)

where

d = diffusivity (cm²/sec)

$$\sigma_{12} = \frac{\sigma_1 + \sigma_2}{2}$$
 = average molecular collision diameter (angetrons) (A-26)

The collision diameter is estimated from the molecular volume as:6

$$\sigma = 1.18 \text{ v}_L^{1/3}$$
 (A-27)

a nd

 Ω_D = collision integral for diffusion

An empirical equation for Ω_{D} has been developed by Chen 7 as follows:

$$\Omega_{\rm D} = 1.075 \; (T \frac{\kappa}{\epsilon_{12}})^{-.1615} + 2 \; (10 \frac{\kappa}{\epsilon_{12}} \; T)^{-.74 \; \log \; (10 \frac{\kappa}{\epsilon_{12}} \; T)}$$
(A-28)

where

$$\frac{\varepsilon_{12}}{\kappa} = \sqrt{\frac{\varepsilon_1}{\kappa} \cdot \left(\frac{\varepsilon_2}{\kappa}\right)}$$
 (A-29)

where

k is the Boltzman constant
s12 is the energy of molecular interaction (ergs)

the value of 6/k for the vapor may be estimated by:5

$$\varepsilon/\kappa = 1.21 \text{ T}_{b} \tag{A-30}$$

when Tb is the boiling point of the liquid (°K).

Since c/k for air is given as 78.6,* the value of T c/k12 in the Chen equation may be estimated as follows:

$$T = \frac{\kappa}{\epsilon_{12}} = .1025 = \frac{T}{\sqrt{T_b}}$$
 (A-31)

8. IMPACTION MODEL

The amount of VX that would impact on a man-sized object as a function of downwind distance and wind speed is estimated as follows2:

$$d_p = 0.454 \cdot Q_F \cdot (U/x)^{2.38}$$
 (A-32)

where

 $\mathbf{d}_{\mathbf{p}}$ is the amount deposited (dose per man) (mg)

Or is the munition fill weight (mg)

U is the wind speed (m/sec)

x is the downwind distance (m)

*NASA Technical Report R-132.

9. VX INHALATION-DEPOSITION

In order to consider the combined effects of aerosol impaction and vapor inhalation as would occur from an exploding VX filled M55, the combined toxicological effects are considered by converting to the intravenous dose $d_{\rm I}$. This approach was developed for ORG 40^2 and explained in the handbook. The equation relating the components can be expressed as follows:

$$d_{I} = D B + d_{D} F_{S} \tag{A-33}$$

where

 d_{I} is the intravenous dose (mg)

D is the inhaled dosage (mg-min/m³)

B is the breathing rate (m³/min)

 d_{p} is the percutaneous dose (mg)

Fs is the skin factor

The inhaled dosage, D, can be computed using Equation 7.

However, if the agent fill weight, Q_F is used as the source, a factor must be introduced to adjust the dosage for the airborne-vapor efficiency of the explosion. An analysis done by Systems Analysis Directorate at ARRCOM, based on tests of the M55 conducted at Dugway Proving Ground, suggests that 13 percent is an appropriate figure. Thus, to compute the intravenous dose from inhalation:

$$DB = D_F \cdot E_V B_2/1000$$
 (A-34)

where

DB is the intravenous dose from inhalation (mg)

 D_F is the 2-minute computed dusage from Q_F (mg min/m³)

E_V is the vapor efficiency

 B_{ℓ} is the breathing rate (ℓ/min).

If Ey = 0.13 and B_g = 25 g/min, then:

$$DB = D_F \ 0.00325$$
 (A-35)

From ORG 40^2 and the handbook, 8 the intravenous dose from deposition on the skin can be computed as follows:

$$d_p F_s = 0.455 (u/x)^{2.38} F_s$$
 (A-36)

If $F_s = 0.022$ for light summer clothing.

$$d_pF_s = 0.01 (u/x)^{2.38}$$
 (A-37)

10. HAZARD DISTANCES FOR THE M23 LAND MINE

From an analysis of experimental data conducted by Systems Development Division, 9 the following model was developed to estimate the impaction, or deposition dose, on a man-sized target downwind of a bursting M23 land mine filled with VX. The model is similar to that adopted for the M55 rocket except that the land mine produced very little vapor. Thus, the model for intravenous dose (equation A-33) contains only the deposition component for the M23 mine.

The depositon on a man-sized target is estimated by the following equation:

$$d_p = 0.262 \ Q_F \left(\frac{u}{v}\right)^{2.24}$$
 (A-38)

where

dp is the peak deposition dose per man (mg)

Qr is the fill weight (mg)

u is the wind speed (m/sec),

x is the downwind distance (m)

If one assumes the vapor to be negligible, then

$$d_{I} = d_{D} F_{S} \tag{A-39}$$

where

THE STATE OF THE S

 d_{I} is the intravenous dose (mg)

F_S is the skin factor

The downwind distance may be computed directly from

$$x = u \left(\frac{.262 \text{ Q}_F \text{ F}_g}{d_T} \right) \quad .4464 \tag{A-40}$$

or for $Q_F = 5.2E6$, $F_S = .022$, and $d_I = .1$,

$$x = 279 u$$
 (A-41)

Equation A-41 estimates the 1 percent lethality distance with light summer clothing from on bursting M23 mine, filled with VX.

For N mines, the equation is

$$x = 279 \text{ u } \text{N} \cdot 4464$$
 (A-42)

11. HD EXPLOSIVE SOURCE

The methodology specified for explosive release of HD (as from the 4.2-inch mortar) in ORG 40^2 and the handbook⁸ is not a physical analog in the same sense as the other models. It is a system of factors computed from wind speed, temperature, stability, and time that determines an agent recovery factor, R. This factor is multiplied by the fill weight, Q_F , and the product is used in an empirically fit version of the Gaussian diffusion model to estimate downwind hazard distance.

The tabular-graphic system appearing in the handbook was approximated by a system of equations to permit automation on either a computer (FORTRAN) or a Pocket calculator. These equations are summarized as follows:

$$Q = Q_F R \qquad (A-43)$$

where R is the agent recovery factor

$$R = 1 \qquad \text{in } F_{E} < -1.2 \qquad (A-44)$$

$$R_{1} = \exp (0.365 - 0.862 \text{ in } F_{E})$$

$$R = R_{1} - \exp (-0.248 - 1.14 \text{ in } F_{E}) \qquad -1.2 < \text{in } F_{E} < 0.4$$

$$R = R_{1} - \exp (-0.0513 - 1.68 \text{ in } F_{E}) \qquad \text{in } F_{E} > 0.4$$

The environmental factor, F_E , is defined by:

$$F_E = F_e \cdot F_w \cdot F_T \qquad \frac{120}{t_A} \tag{A-45}$$

where

FE is the environmental factor

Fw is the wind speed factor

F_T is the temperature factor

 t_A is the lapsed time after detonation (min)

Then

$$F_T = \exp (2.2 - 0.0837 T_C)$$
 $T_C \le 27$ (A-46)
 $F_T = \exp (2.05 - 0.077 T_C)$ $T_C > 27$

where

$$T_C$$
 is the temperature (°C)
 $F_W = 1.55 \text{ u}^{-0.79}$ A-47)

The values of Fs are defined in Table A-2.

Table A-2. Parameters for Explosive HD

Stability	Fg	α, β	871	SZ1
A,B	0.7	3.3	0.00000147	0.0000628
C,D	1.0	1.4	0.0108	0.0204
E,F	1.25	1.02	0.0622	0.0636

The dosage at x is then computed from:

$$D(x) = \frac{Q}{60\pi \sigma_{y}(x) \sigma_{z}(x) u}$$
 (A-48)

where

$$\sigma_{y}(x) = \sigma_{y1}(x + B)^{\alpha}$$
 $\sigma_{z}(x) = \sigma_{z1}(x + C)^{\beta}$
 $B = (3.8/\sigma_{y1})^{1/\alpha}$
 $C = (0.2/\sigma_{z1})^{1/\beta}$
(A-49)

Equation A-48 is of the same form as equation A-5, except that source sigmas of 3.8 and 0.2 have been introduced. Please note that the values of α,β,σ_{V1} and σ_{Z1} are not the same in Tables A-1 and A-2. The values in Table A-2 are to be used only for explosive HD sources.

12. PLUMES AND OTHER HEATED SOURCES

This section deals with the techniques involved in the calculation of an effective height of release

$$H = H_S + \Delta h$$

Hs is the release height

Ah is the amount of rise due to buoyancy or momentum of a release of agent possessing positive vertical-movement tendencies.

This tendency to rise, either by momentum or buoyancy, creates a pseudo release point at some particular height above the ground and at a distance downwind from the initial release point. The methods presented here are concerned with tracing the centerline as the cloud rises.

Several assumptions are present either explicitly or implicitly in the methods presented. The first is the absence of any major aerodynamic effects present to influence cloud rise. For example, the presence of buildings, topographical features, or the stack itself, in the case of plumes, can create wakes that may result in extremely high concentrations at ground level. A rule of thumb applicable to smoke stacks is that a stack 2.5 times the height of an adjacent building will minimize this phenomenon of downwash. 10 Also, a stack efflux velocity of at least 1.5 times the average wind speed at the top of the stack is usually enough to overcome the downwind pressure gradient creating the downwash effect. 10

Another assumption is that the height of the mixing layer is greater than the estimate of the effective release height. In situations where this is not the case, the user is directed to Brigg's work, 10 where a methodology is presented for predicting whether a plume can penetrate through the mixing layer cap. In situations where the plume penetrates this cap, the effluent or pollutants are trapped above the surface mixing layer so that only negligible concentrations are expected at ground level.

12.1 Holland Model.

The Holland equation¹¹ has seen wide use for the determination of plume rise from industrial stacks. This equation frequently underestimates the effective height of the stack and, therefore, provides a slight safety factor in hazard distance calculations. Its major advantage is that each of the variables required is usually easily obtained or estimated. The form of the equation is as follows:

$$\Delta h = \frac{V_a d_a}{v} \left(1.5 + 2.68 \times 10^{-3} P_a \frac{T_a - T_a}{T_a} \cdot d_a \right)$$
 (A-50)

where

Control of the second control of the second

 $\Delta h = rise of plume above the stack (m),$

 V_S = mean stack effluent velocity (m/sec)

 $d_s = inside diameter of stack (m),$

U = mean wind speed (m/sec),

 P_a = ambient air pressure (mbar), not corrected to sea level.

 $T_S = stack effluent temperature (°K).$

 T_a = ambient air temperature (°K), and

2.68 x 10^{-3} is a constant with units mbar-1 m-1

Holland 11 suggests that 10 to 20 percent of the rise given by the equation be added for unstable conditions and/or equal amounts subtracted for inversions.

Since the Holland equation is an empirical formulation, it should not be applied to stacks exceeding the ranges on which it was developed, i.e., stack diameters from 1.7 to 4.3 meters and stack temperatures from 82 to $205~^{\circ}\mathrm{C.}^{12}$. It should also be noted that the downwind displacement between the stack and the point at which the maximum rise occurs is not measured by this method. Thus, this technique should not be used if the resulting hazard distance is within a few hundred meters from the stack, since this value will tend to underestimate the true distance.

When more accurate estimates of cloud rise are required, the following methods derived by Briggs are capable of providing such results.

12.2 The Briggs Model.

An important result of the study by Briggs 10,13 was that buoyant plumes were found to follow a 2/3 power law. The assumptions were made that buoyancy is conserved and that any initial momentum is negligible for a very buoyant plume in unstratified surroundings. 13 The form of the equation:

$$\Delta h = 1.6 \text{ F}^{1/3} \times 2/3 \text{ U}_2^{-1}$$
 (A-51)

where

F = initial buoyancy flux divided by $\pi \rho$ (m⁴/sec³).

$$= \left(\frac{T_a - T_a}{T_a}\right) \left(\frac{a \ V_a \ d_a^2}{4}\right)$$

 $T_a = ambient temperature (°K),$

 $T_s = plume temperature (°K).$

 V_S = mean stack effluent velocity (m/sec).

g = gravitational constant (9.8 m/sec²),

 $d_{s} = internal stack diameter (m),$

x = downwind distance from stack (m), and

 U_z = average wind speed at top of stack (m/sec).

Appendix A

The constant, 1.6, in equation A-51 is based on a "best-fit" of empirical data and corresponds to a value of the entrainment coefficient of 0.6, which is typical of large fossil-fuel plants.

The vertical structure of the wind in the lowest turbulent layer, from the surface to approximately 300 m, has been adequately described by the empirical power law in which

$$U_{r} = U_{r}(z/z_{r})^{p} \tag{A-52}$$

where

 $U_r = wind speed measured at height z_r (m/sec).$

z = stack height (m), and

p = wind profile exponent (nondimensional).

Values for p are provided for various locations in Appendix D of the handbook.⁸ Since the values presented there are topographically dependent and not site-dependent, the wind profile exponents can also be used for sites not included. On the basis of terrain type, values associated with Dugway Proving Ground can be used for flat terrain, those for Anniston Army Depot for rolling or hilly terrain, and those for Johnston Island can be used for marine sites.

For neutral stability, a good approximation is given by:

$$\Delta h = 1.6 \text{ F}^{1/3} \text{ U}_{x}^{-1} \text{ x}^{-2/3}$$
 when x < 3.5 x*
$$\Delta h = 1.6 \text{ F}^{1/3} \text{ U}_{x}^{-1} (3.5 \text{ x*})^{2/3}$$
 when x > 3.5 x* (A-53)

where x* is calculated by the relationships.

$$x^* = 14 \text{ F}^{5/8}$$
 when F < 55 m⁴/sec³
 $x^* = 34 \text{ F}^{2/5}$ when F > 55 m⁴/sec³. (A-54)

For stable regimes, equation A-51 is valid approximately to the maximum distance $x = 2.4 \ U_Z$ s where s is defined by:

$$\mathbf{s} = \frac{\mathbf{g}}{T_a} \frac{\partial \theta}{\partial \mathbf{g}} \tag{A-55}$$

where = average potential temperature gradient (°K/m).

Beyond the distance, x, defined above, the height of the plume centerline levels off under stable conditions at about

$$\Delta h = 2.5 (F/U_s)^{1/3}$$
 (A-56)

Appendix A

In situations where there are calm or very light winds under stable conditions, the following formula developed by Morton, Taylor, and Turner 14 best applies if it gives a lower plume rise than equation $A-5\ell$:

$$\Delta h = 5.0 \text{ F}^{1/4} \text{s}^{-3/8}$$
 (A-57)

Briggs 13 notes that equations A-53 and A-54 apply satisfactorily in unstable conditions as well, and also in slightly stable conditions, if they give a lower plume rise than equation A-56.

12.3 The Briggs-Thomas Model.

Thomas 15 also working with the "two-thirds power law," determined plume rise to correspond to the following formulation, which uses the Pasquill categories for determining atmosphere stability classification.

$$\Delta h = CF^{1/3}U_{\pi}^{-1} \times {}^{2/3} \tag{A-58}$$

Based on observations under various stability conditions:

$$C = 1.065 - 6.25 \frac{30}{3\pi}$$
 (A-59)

30
where ___, the average potential tempeature gradient, is defined in Table A-3.
az

Table A-3. Average Potential Temperature Gradient

Stability	Pasquill stability category	30 3z
		(°K/m)
Extremely unstable	A	-0.010
Moderately unstable	В	-0.008
Slightly unstable	а	-0.006
Neutral	מ	0.000
Slightly stable	E	0.010
Moderately stable	r	0.037

12.4 Jet Plumes.

In the case of jet plumes, where momentum is the overriding factor in plume rise, it is recommended that in neutral, windy conditions the trace of the centerline is given by:

$$\Delta h = 1.44d_a (V_a/U_a)^{2/3} (x/d_a)^{1/3}$$
 (A-60)

and is valid at least to the point

$$\Delta h = 3 \cdot v_{\alpha}/v_{\alpha} \cdot d_{\alpha} \text{ providing } v_{\alpha}/v_{\alpha} > 4. \tag{A-61}$$

For windless conditions, the jet rises to

$$\Delta h = 4(F_m/s)^{1/4}$$
 (A-62)

where

Fm = momentum flux parameters

$$= \frac{\rho_0}{\rho_A} \, v_a^2 \cdot \frac{4a^2}{4}$$

 ρ_0 = density of gases emitted from stack (gm/m³)

 ρ_{Λ} = density of ambient air (gm/m³).

Other variables as defined above.

From a purely theoretical standpoint, Briggs suggests using the following formula in a stable regime with some wind and also recommends its use if it predicts a lower rise than either equation A-61 or A-62. The theoretical formula based on his model is:

$$\Delta h = 1.5 (F_m/V_p)^{1/3} e^{-1/6}$$
 (A-63)

12.5 Rise of Heated Clouds.

Technical Paper No. 10¹ presents a methodology for the calculation of the rise of a heated cloud resulting from a fire or explosion in a stable atmosphere. The method is based on the work by Briggs¹³ and extended by Dumbauid et al. ¹⁶ This presentation of the method has been simplified and the notations made to conform with that used in this handbook.

The maximum cloud rise, Δh , downwind from an instantaneous source in a stable atmosphere, is given by

$$\Delta h = \left[\frac{6F}{\gamma_{I}^{3}, s} + \left(\frac{r}{\gamma_{I}} \right)^{4} \right]^{1/4} - \frac{r}{\gamma_{I}}$$
(A-64)

F = buoyancy parameter

$$= \frac{\mathbf{gQ_h}}{\pi \rho_{\mathbf{a}} C_{\mathbf{p}} T_{\mathbf{a}}}$$

g = acceleration due to gravity (9.8 m/sec²),

 $Q_h = effective heat released (cal),$

 ρ_{α} = density of ambient air (gm/m³),

 C_D = specific heat of air at constant presssure (0.24 cal/gm $^{\circ}$ K),

 T_a = ambient air temperature (°K),

 γ_I = entrainment coefficient for an instantaneous source (dimensionless),

r = initial cloud radius (m),

 $s = \frac{g}{T_a} \quad \frac{\partial \theta}{\partial z} \quad \text{restoring acceleration per unit vertical displacement} \\ for adiabatic motion in atmosphere (sec^{-2}),$

(Estimates for this are provided in Table A-3.)

It is recommended 1 that a value for $\gamma_{\tilde{I}}$ of 0.64 be used for large explosive releases.

The maximum cloud rise Δh , downwind from a quasi-continuous source (see section 7.4 of the handbook)⁸ in a stable atmosphere is given by:

$$\Delta h = \begin{bmatrix} \frac{6 F_c}{U \gamma_c^2 s} + \left(\frac{r}{\gamma_c}\right) \end{bmatrix}^3 - \frac{r}{\gamma_c}$$
(A-65)

where

U = mean wind spend (m/sec),

 F_c = continuous buoyance parameter

 Q_c = effective heat released (cal/sec),

 γ_{C} = entrainment coefficient for a quasi-continuous source dimensionless Other variables as defined above.

Briggs 13 cites a value of 0.5 for γ_{C} for buoyant plumes such as those resulting from uncontrolled fires.

13. CONCENTRATION IN AN INVERSION BREAKUP FUMIGATION

A ground-level inversion may be eliminated by the upward transfer of heat when the ground is being warmed by solar radiation. In the transient situation, substances that have been emitted into the stable layer will be mixed vertically as they are reached by the thermal eddies. As a result, the ground level concentrations can increase over what would be expected under either stable or unstable conditions. This process has been called fumigation.

In the Workbook of Atmospheric Dispersion Estimates, Turner 17 recommends essentially a box model with the height taken as the height of release plus 2 sigma-Z. He further suggests that the cloud width be increased by a 15-degree angle through the downward transport.

$$x_{F} = \frac{Q}{\sqrt{2\pi} U \sigma_{yF}^{H} I}$$
 (A-66)

 $\chi_{\rm E}$ = the peak concentration under fumigation conditions

$$\sigma_{yF} = \sigma_y + H/8$$

o, is for stable conditions

Other parameters are as defined previously.

14. IGLOO FIRE MODEL, M55 ROCKET

The most complete report on the consequences of an igloo fire containing M55 chemical munitions is given in ORG Report 44.18. The reader is

advised to consult this report for an understanding of the many aspects of this problem. The following is a tabulation of particulars extracted from this report that may be useful in routine downwind hazard calculations.

- 14.1 GB Fill.
- 14.1.1 The source is taken as the fill of 2.52 percent of the rockets stored.
- 14.1.2 The agent is released according to the following schedule:

Time interval (min)	Source (%)	Cumulative time (min)
15	91	15
5	6	20
40	3	60

- 14.2.1 VX F111.
- 14.2.1 The VX source is taken as 0.164 percent of the total fill.
- 14.2.2 This source is released over a period of 5 minutes.
- 15. PALLET MODEL, M55 ROCKET

Data on sympathetic detonation within a pallet of M55 rockets is reported in AEO Report No. $24\text{-}77.^{19}$ This report concluded that the equivalent of 2 rockets would detonate, and the contents of the remaining 13 would spill and be distributed over an area 9 x 61 meters. A subsequent analysis by CSL* indicated that this evaporative source could be approximated as a normal volume where SXS = 0.83 m and SYS = 7.0 m.

16. SELECTION OF ATMOSPHERIC STABILITY

The classification scheme for atmospheric stability employed in sub-routine PSST3 is based on a system proposed by Pasquill. 20 The system was quantified and reduced by a system of logical decisions by Turner 21 based on the elevation angle of the sun, cloud cover, and cloud height. These parameters determine a net radiation index for heating of the surface during the day and for cooling at night. The stability class is then estimated as a function of wind speed. This logic is summarized in Tables A-4 and A-5.

17. DIFFUSION PARAMETERS IN FOREST TERRAIN

The diffusion parameters recovered from subroutine WOODS are a matter of professional judgment based on a body of field data. These estimates first

^{*}Analysis done by C. G. Whitacre, CRDEC, in 1978 in which rocket fragments were traced to infer the distribution of liquid agent. Unpublished data.

appeared in a GCA Corporation progress report for January 1967. The author, Dr. Harrison E. Cramer, revised these estimates in April of that year at the request of ORG. The values were recorded in a Memorandum for Record, 5 May 1967, by Mr. Irving Solomon of ORG.* See Table A-6.

Table A-4. Net Radiation Index

			Day						Night	ŧ
Cloud cover (1/10)	0-5		6-9		10)	1	0	9-5	4-0
Cloud height (1000 ft)		> 16	16-7	< 7	<u>></u> 7	< 7	< 7	<u>></u> 7	-	
Solar altitude										
< 15 ⁰	1	1	1	1	1	0	O	-1	-1	-2
15-35°	2	2	1	1	1	0				
35-60°	3	3	2	1	2	0			<u> </u>	
> 60°	4	4	3	2	3	0				l

^{*}Night is defined as the period from 1 hour before sunset to 1 hour after sunrise.

Table A-5. Pasquill Stability Category as a Function of Net Radiation Index and Wind speed

Wind speed		N	et ra	diati	on in	dex	
m/sec	4	3	2	1	0	-1	-2
< 1	Α	Α	В	С	ם	F	F
1	A	В	В	С	D	F	F
2	٨	В	С	D	D	E	F
3	В	В	С	D	D	E	F
4	В	С	С	D	D	מ	E
5	С	С	D	D	D	D	Ε
6	С	c	ם	D	D	D	ם
> 6	С	D	מ	D	D	D	D

^{*}A copy of this memorandum is on file in the Studies and Analysis Office, CRDEC.

Table A-6. Diffusion Parameters in Forest Terrain

حصیه داشیسا	Vin	dspeed				
	rence e canopy	Transport Under canopy	a	s _{y100}	8	S ₂ 100
ab µ	10/80 C	m/sec		y 200		2400
Deciduou	Forest, Wi	ter		1		1
1	0.45	0.089	0.8	12.8	1.2	8.97
5 12	2.20 5.40	0.45	1.0	12.1 12.0	1.2	9.66 10.35
12 19	8.90	1.1	1.0	12.0	1.2 1.2	10.35
		Coniferous Forest.				
1	. 20000 0110	1 0.089	1 0.8	18.2		12.96
5		0.36	1.0	17.5	1.3	13.78
12		0.8	1.0	16.8	1.3	13.78
20		1.3	1.0	14.5	1.3	13.78
Conifero	us Forest					
1		0.089	1 0.8	23.5	1.3	14.59
5		0.36	1.0	22.5	1.3	15.4
12 20		0.8	1.0	19.0	1.3	15.4
		1.3	1.0	14.0	1.3	15.4
	ciduous and duous Forest	Coniferous Forest, Summer	Summer,			
1		1 0.045	1 0.8	1 29.0	1.4	20.4
5		0.22	1.0	26.5	1.4	20.4
12		0.54	1.0	22.5	1.4	20.4
20		0.89	1.0	16.5	1.4	20.4
Tropical	Rain Forest	•	•	1	•	•
1		0.045	1.0	53.0	1.0	34.5
5		0.13	1.0	36.0	1.0	34.5
12 20		0.27	1.0	26.0	1.0	34.5 34.5
••		0.43	1	1 23.0	1	,,,,

LITERATURE CITED

- 1. Technical Paper No. 10. Methodology for Chemical Hazard Predictions.
 Department of Defense Explosives Safety Board. March 1975. UNCLASSIFIED Report.
- 2. Solomon, Irving <u>et al</u>. ORG Report 40. Methods of Estimating Hazard Distances from Accidents Involving Chemical Agent. Operations Research Group, Edgewood Arsenal, Maryland. February 1970. CONFIDENTIAL Report.
- 3. Milly, George H. ORG Study No. 17. Atmospheric Diffusion and Generalized Munitions Expenditures. Operations Research Group, Army Chemical Center, Maryland. May 1958. UNCLASSIFIED Report.
- 4. Robinson, Philip E. Model for the Estimation of Concentration Levels from a Finite Time (Semi-Continuous) Release. FORTRAN Programs Listing, Systems Analysis Office, Edgewood Arsenal, Aberdeen Proving Ground, Maryland. June 1975. UNCLASSIFIED Report.
- 5. Chemical Engineers' Handbook, 3d Edition. J.H. Perry, Editor. McGraw-Hill Book Company, Inc. New York, N.Y. 1950.
- 6. Rife, R.R. THAMA Report No. DRXTH-ES-TM-81101. Calculation of Evaporation Rates for Chemical Agent Spills. March 1981. UNCLASSIFIED Report.
- 7. Chen, N.H. Empirical Equation for the Collision Function on Lennard-Jones Potential for Gas Diffusion Coefficient. Ind. Eng. Chem. 51, 1494 (1959).
- 8. Handbook for Chemical Hazard Prediction. U.S. Army Materiel Development and Readiness Command. March 1971. UNCLASSIFIED Document.
- 9. Whitacre, C. Glenvil. ARCSL-TR-79023. Downwind Hazard from Bursting M23 Land Mine. April 1979. UNCLASSIFIED Report.
- 10. Briggs, Gary A. AEC Critical Review Series, No. TID-25075. Plume Rise. November 1969. UNCLASSIFIED Report.
- 11. AEC Report ORO-99. A Meteorological Survey of the Oak Ridge Area. U.S. Weather Bureau, Washington, DC. 1953. UNCLASSIFIED Report.
- 12. Moses, H., Strom, G.H., and Carson, J.E. Effects of Meteorological and Engineering Factors on Stack Plume Rise. Nucl. Saf. 6(1), 1-19 (1964).
- 13. Briggs, Gary A. Some Recent Analyses of Plume Rise Observation. Proc. Second Int. Clean Air Congr., Academic Press. New York, NY. 1971.
- 14. Morton, B.R., Taylor, G.I., and Turner, J.S. Turbulent Gravitational Convection from Maintained and Instantaneous Sources. Proc. R. Soc. London Ser. A 234, 1-23 (1956).
- 15. Thomas, F.W., Carpenter, S.B., and Colbaugh, W.C. Plume Rise Estimates for Electric Generating Stations. Philos. Trans. R. Soc. London <u>265</u>, 221-243 (1969).

- 16. Dumbauld, R.K., Bjorklund, J.R., and Bowers, J.F. NASA Contractor Report CR-61327. NASA/MSFC Multilayer Diffusion Models and Computer Program for Operational Prediction of Toxic Fuel Hazards. NASA Marshall Space Flight Center, Huntsville, Alabama. 1973. UNCLASSIFIED Report.
- 17. Turner, D.B. Workbook of Atmospheric Dispersion Estimates. p. 53. Public Health Service Publication 999-AP-26, Robert A. Taft Sanitary Engineering Center, Cincinnati, OH. 1967.
- 18. Solomon, Irving et al. ORG Report 44. Hazards Associated with the Handling and Storage of M55 Chemical Rockets (U). Operations Research Group, Edgewood Arsenal, MD. May 1971. CONFIDENTIAL Report.
- 19. AEO Report No. 24-77. T410 Propagation Between Munitions for Palletized M61 Rockets, Ammunition Equipment Office. Tooele Army Depot, Tooele, UT. October 1977. UNCLASSIFIED Report.
- 21. Turner, D. Bruce. Relationship Between 24-Hour Mean Air Quality Measurements and Meteorological Factors at Nashville, Tennessee. J. Air Poll. Contr. Assoc. 11, 483-489 (1961).

APPENDIX B

NOTES ON PROGRAM CONSTRUCTION

Blank

APPENDIX B

NOTES ON PROGRAM CONSTRUCTION

1. INTRODUCTION

The following is a collection of notes on the internal workings of the D2PC program. These are like external comment cards (on paragraphs). The normal user of the program will not need to remember all of this, but it should be useful for any future modifications.

The program is written in FORTRAN 77 and was originally compiled and tested on the UNIVAC 1100/60 computer. The source program was then transferred to an IBM compatible Eagle PC and recompiled with microsoft FORTRAN 3.3. The only changes made in the source code were the format of the INCLUDE statement in MASTER (see Section B-5 below) and the addition of a back slash (\setminus) to line 27 of subroutine DEF. This permits keyboard entries to be displayed on the same line with the word INPUT.

2. COMMON

Communication between MASTER and the subroutines is, for the most part, accomplished through a block of unlabeled common (107 words). With the expansion of the ALL statement to include all input variables, common was extended to all of the subroutines except ERF, WOODS, UNT, and READA. The other subroutines that have arguments in their CALL statements (EVAP, PLRS, STAB, and DEF) employ the common block but identify only a segment of the variable names in each. Of course, the segment in each subroutine must coincide with the position in MASTER. This is accomplished by introducing dummy arrays before and after the segment to position the variable of interest. The remaining values are exchanged through the argument list. The MASTER and subroutines DDS, CDS, and OLIST contain the complete common list.

THE ALL QUESTION

Beyond the exchange of information, the common block of data is also used by MASTER to assign values to the variables during the random order input from the ALL question. This is accomplished through a parallel array. PNU, which lists the three-letter literal name of each variable as it is known in the ALL question. The PNU array corresponds to the COMMON block beginning with variable PR(1) and ending with ID2.

This random order input is accomplished by first searching the PNU table to identify the position of the variable name and then storing the argument in the corresponding position in COMMON. The variables PR(1), LOCT(1), and IPR(1) are taken as the reference positions.

There are several complications in this storage process. The variable name is always alphabetic, but the argument can be real, integer, or alphanumeric. The real and integer can be entered through the free format available in FORTRAN, but an alphabetic input in the data field is more troublesome. This is accomplished in FORTRAN 77 by reading the field, initially, as a character string and

then rereading this string with different formats. This created another problem in that the rereading statement (where the string variable name is given as the input channel) would not accept the free format designation. The free format is approximated by using the BN (blank null) option in the format; this permits free positioning within the field specified, but each variable must be in a new field as specified. Thus, the free format is limited to one variable per input. This is acceptable for the ALL question since the first field is always three alphanumeric characters, and only the second field needs to be in free format.

Table B-1. Storage Process

	Vari	able		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Variable			
	Literal	Program	J		Literal	Program	J	
1.	TIM	RP(1)	1	35.	CRD	CR	1	
2.	DLX	DXT	•	36.	SLA	SLA	1	
3.	HTS	HT		37.	SLO	SLO	ī	
4.	HML	HML		38.	CCT	CC	ī	
5.	SXS	SXS		39.	CHT	CH	ī	
5.	SYS	SŸS		40.	SUN	ĀĒ	ָר. ר	
7.	SZS	SZS		41.	PMM	PMM	ī	
3.	TMC	TIVCH		42.	ZZO	ZO	•	
9.	WND	ÜT	1	43.	LOC	LOCT(1)	1	
io.	BRT	BR	•	44.	SEA	SEAT	i	
ii.	SKF	SF		45.	MUN	MUNT	i	
12.	TMP	TMP	1	46.	AGN	AGNT	î	
iā.	AL.F	ALFA	•	47.	REL	REL	i	
14.	SYR	SY100		48.	STB	MTC	i	
15.	BTA	BETA		49.	SUR	SUR	i	
16.	SZR	SZ1 00		50.	WOO	WT	i	
17.	SMH	Z		51.	HLD	•••	1	
18.	REF	RC		52.	RLS			
19.	SEV	Ÿ		53.	1120			
20.	qqq	ġs	1	54.	IRT	IPR(1)		
21.	ŤĚŸ	ŤĚVP	ī	55.	NDI	ND		
22.	ARE	SAVP	ī	56.	0P0	IPO		
23.	LEN	FL	i	57 .	2MC	I 2MC		
24.	FMW	FMW	i	58.	IMA	IMA		
25.	FMV	FMV	1	59.	OPC	IPC		
26.	VAP	VΡ	i	60.	IMM	IMM	1	
27.	BPT	BP	i	61.	IDD	IDD	î	
28.	HST	HS	•	62.	HRS	IHR	i	
29.	DST	DS		63.	NOV	NOV	•	
30.	TST	TSC		64.	INP	INP	1	
31.	VST	VS		65.	MNR	MRL	4	
32.	RDE	RDE		66.	NMU	NMU	1	
33.	FRO	P		67	NC I	ND		
34.	HRL	HR		0/	110 1	110		

For convenience, this storage process divides the PNU table into three segments. Elements 1 through 42 are input as real variables; 43 through 53 are alpha, and 54 through 67 are integer. The integer portion uses variable IPR(1) as a new reference point. Table B-1 lists the variable names as identified by PNU, the name of the variable as it appears in COMMON, and the corresponding flags in the J table. (The J table is discussed later under rescan).

The control variables (ALL, STP, RST, RSN, GTO, etc.) do not require storage of an argument, and these are intercepted by a scan against PNUC before the scan of the PNU table.

The commands hold (HLD) and release (RLS) are identified from the PNU table to determine the value of the index I. An additional scan of the PNU table is then performed with the argument (PRT) to establish which variables are to be flagged for hold. This generates the index II, which stores or clears a flag in the K array.

The operation of the program rescan in successive runs was discussed in the body of the report. The mechanism that controls this rescan is based on the sum of J(I), which is accumulated with each entry in the ALL question. When the word ALL is given, this sum is tested and if greater than zero the rescan will occur.

4. INDEX NAMES

All of the multiple choice answers that are read in questions 2, 3, 4, 6, 8, and 9 are converted to integer index values for use in the program logic. Table B-2 identifies the variable name with the index name for each.

Variable	Index
LOC	IL
SEA	IS
MUN	IMU
AGN	IA
REL	IR
STB	IM

Table B-2. Variable and Index Names

5. THE INCLUDE STATEMENT

The MASTER program contains an INCLUDE (line 22). The operation of this statement will be explained to help the user develop an alternative if his system does not permit the INCLUDE statement.

In the UNIVAC version of this program the statement appears as INCLUDE HMLMDR. Here HMLMDR is a FORTRAN PROC that is listed at the end of the program (Appendix E). In operation, the PROC is included at compile time as if the statements were written into the program.

In the 1100/60 system, the PROC must be prepared by processing with a PDP,F processor and available in the file whenever the calling program is compiled. For the MICROSOFT processor, the format of the INCLUDE statement is changed to \$INCLUDE: 'HMLMDR.FOR' with the dollar sign in column 1.

INTERNAL INDICATORS

Internal indicators are variables that are assigned values within a program to convey information to another part in the program or to remember for a later time. A few of these will be discussed here for the user's (programmer's) information.

The indicator IDEP is used by MASTER to select the downwind model in subroutine DDS. A value of -1 indicates that the instantaneous release of HD is requested. This will cause DDS to CALL HD42, which will compute the airborne source and assign special diffusion parameters.

IDEP is assigned a value of 1 when the inhalation-deposition model based on the M55 rocket is used. Here the vapor source is taken as 13 percent of the fill weight, and the downwind dosage at each distance is converted to the intraveneous dose, which is then added to the percutaneous dose from the impaction model. IDEP is assigned a value of 2 for the M23 land mine. The downwind hazard calculation for the M23 is based on the percutaneous dose alone. Both the M55 and M23 models are part of DDS.

The indicator I2MC is the internal equivalent of 2MC in the ALL statement and is used to control the 2-minute correction in DDS. Normally the 2-minute correction is applied to GB and VX vapor at levels of response above "no effects." In program D2 the D(1) level of response will not contain the 2-minute correction unless specifically instructed. In normal operation, when the response dosages are drawn from the tables automatically, the "no effects" value is written into D(1). Then, if the value of MNR is set to zero, the DDS subroutine will change I2MC to zero after the distance for D(2) has been computed, and thus drop the 2-minute correction for D(1).

In the event that one does not wish I2MC to change for D(1), a hold can be placed on I2MC (HLD 2MC) in the ALL question. The hold flag is stored in the K table, but the K table is not available to subroutine DDC. Therefore, the hold signal is transmitted to DDC by setting the value of I2MC at 1 instead of 2, which is the usual 2-minute correction signal.

The K table is used by MASTER to remember the variables that have been flagged as hold. This is a 67-element table that corresponds to PNU. A flag can be set for any variable (in ALL), but only the few that can be overwritten by rescan have inhibit tests installed.

Element 67 in the K table corresponds to NCI in the PNU list. This element is used to place an automatic hold on NCI when IMA is set to 1, 2, or 3. The value of K(67) is given the value of PRT at the time 1MA is identified in the ALL statement. Then, since IMA = 0 in the dosage configuration, this releases the hold on NCI automatically. The D table in COMMON is used to store both the values of DI and CI, and NDI and NCI are defined within the program as ND. Thus, a hold placed on either NDI or NCI will prevent the table look-up of DI.

When the plume rise subroutine, PLRS, is called by specifying releases STK, STJ, FLS, or FIR, a special programming problem is created by permitting the cloud to rise with downwind distance (OPC = 2 or 3). When these release modes are specified, the MASTER calls PLRS with the argument XI set to zero. This begins a process in PLRS that can list the DHT = f(x) table (OPC = 1 or 3) or the various values of DHTMX, which is the maximum cloud rise. In this process, the distance for maximum rise (XMX) is stored, and the stack height (HST) is added to DHTMX and stored in COMMON as HT. This is the value used by DDS or CDS if CPC is given as 0 or 1. If OPC is given as 2 or 3, this maximum height is listed as the release height in the second line of output from DDS or CDS, but HT is now recalculated for each downwind distance and listed in the output.

Secretary reserves hereasts

To control the interchange between PLRS and DDS or CDS, a control indicator, IRTP, is initially assigned a value of IRTP = 1 (or IRTP = 0 when 4 < IR < 9) in DDC or CDC. This first controls the bypass of CALL PLRS. If PLRS is called, IRTP is redefined in PLRS as -1 when OPC = 2 or 3. Then as x increases beyond XMX, the value of IRTP is changed to one. This now bypasses the call to PLRS. IRTP is also used in the logic of selecting the contour length (or hazard distance) to a specified dosage. Here the calculation of downwind distance continues one cycle beyond the height where the maximum height of the cloud has been reached. This prevents the program from selecting the hazard distance from the first mode of the bimodal distribution, which can be caused by the rising cloud.

The indicator IER is used in the interpretation of question 15 to remember that there was an error on the initial reading of PRT. After PNUT is identified, IER causes PRT to be reread as an alpha field.

The variable IRL is set to one to remember that the dosages of interest have been drawn from the tables and thus that the interpolated distances can be labeled on output (1%, ND, NE). Values that are input with NDI are not labeled.

The indicator ISM is set to one when the command SMD is used to initiate execution of DDS. When ISM equals one, the table of dosages (DS(K)) is not cleared from the previous run. The dosages for corresponding values of X are always added to the current value so that this will sum the dosages from the previous run (or runs) with the present and thus accumulate the dosages for multiple releases.

The arguments interchanged with subroutine DEF are normally the question number, IQ, and the return indicator, IRT, that tells the calling subroutine when the question has been asked (0 = N, 1 = Y). (Note that this internal IRT is different from the IRT in the control commands.) Many variations are used. A zero value for IQ causes the IQT table (which remembers which questions have been asked) to be cleared to zero; a negative question number clears the block on that question only. An IQ value greater than 40 will print the options and definitions for the question defined by the number minus 40. An IQ value of 39 prints the information table when NOV equals 3.

When IQ equals 40, a negative value of IRT will print one of the four tables requested with the TAB command. A positive value of IRT will list the options and definitions requested for the question requested by a DSP command. An IQ value of 40 and an IRT of zero prints the table definition requested by

24444

three question marks. These controls are set up in the MASTER in response to commands TAB. ???. and DSP.

When TMC (time to met change) is assigned a value in the ALL question. the program converts this time into the distance (XCH) the cloud would travel at the specified wind speed. If the distance to minimum response exceeds XCH, the program will stop with the questions:

> INPUT: STB INPUT: WND, HML, TMC.

This is a request for the new met conditions. The new value of TMC is now the length of the next interval in minutes. Internally, the interplay between MASTER and DDS is controlled by TIVCH, which transmits the value of TMC to DDS, and the indicator, IMTCH, which controls the special return to MASTER.

7. ADDITIONAL CAPABILITIES

There is a data base for stability categories I and N. These are recognized by MASTER, and values for the diffusion parameters are given in DDS and CDS. These parameters are intended for inversion and neutral stability in urban areas. These values were taken from a 1957 Fort Detrick Report* and further study is planned.

An additional capability is a provision to compute the cloud width with distance (OPO = 3). The user is cautioned in following these estimates of width in safety applications. The width is measured from the pattern centroid, but the centroid is subject to shifts with wind direction, terrain, and obstructions. Thus the width is useful for area calculations, but a safety corridor should be wider.

The commands RUN and PEEK are intended for deep debugging. The RUN command will cause the program to execute the downwind hazard estimate without considering if the program should first rescan. The PEEK command will cause the program to display the current values in COMMON. The PEEK options are as follows.

- PEEK 1 List QT(), TWL()
 2 List DI(), DIL()

 - 3 List 42 real values
 - 4 List 11 alphanumeric codes
 - 5 List 21 integer values
 - List D-A generated by vapor depletion run

Options 3, 4, and 5 will display the three-character code for each variable (TAB 4) with the current numeric value.

^{*}CML 2564. Semi-Annual Report. April-September 1954. Contract #DA-18-064-CML-2564, Department of Chemistry, Stanford University. UNCLASSIFIED Report.

SUBROUTINE UNT

The units conversion capability provided by subroutine UNT is designed to be invisible to the user when conventional metric units (as specified in the questions) are used. That is, the user needs to input no special code to identify these units. Other units, however, must be identified so that the program can initiate the conversion.

9. SUBROUTINE READA

Subroutine READA is provided to extract the units conversion code from numeric inputs and call UNT. The arguments are defined as follows:

UM is the unit code
IA is the agent index
PRT is the argument being converted
IQ is the question number
IRT is the return message to repeat.

The argument is processed as PRT but returned to the calling program as the fourth argument in the call statement.

10. SUBROUTINE OLIST

The text of the numbered questions now come from subroutine QLIST. In operation the program calls DEF with the question number. DEF determines if the question has been asked and if not prints options and definitions as directed by the value of NOV. It then calls QLIST, transmitting the value of IRT. If the question has not been asked, the question and code are printed. On rescan when the question has been asked, QLIST also recovers the current value of the parameters from COMMON and displays this with the question.

The text of the questions is stored as array QTAB and the three-character parameter codes are listed in a parallel array, SYM. When IRT = 1, the text of the question and the parameter code indicated by IQ are displayed. When IRT = 1, the question and code are followed by the current value of the parameter. This is accomplished through array IQR, which identifies the location of each parameter in COMMON in terms of the question number. Another array, IQM, specifies how many values are associated with each question.

The use of arrays PR(1), LOCT(1), and IPR(1) as markers in the common table is recognized as something of a tour de force in this program.

Equivalence arrays would have been easier to follow (or explain). It should also be noted that placing the character strings in COMMON is not standard for the UNIVAC FORTRAN 77 and it will complain, but it still works.

11. SUMMING D(X)

A two-column table, DS (dimensioned 51,2) is defined in subroutine DDS to sum dosages at corresponding distances from multiple releases. The current (last generated) dosages are written in level 1 with each execution. Level 1 may be summed into level 2 with the command SMD. If the command SMP is given before the last ALL, the next downwind distance is distance based on the last Sum (level 2) and the current DP (level 1). The Sum column is cleared with the command SMC.

These operations are performed in subroutine DDS and are controlled from MASTER by indicator ISM. ISM is set to zero for SMC, to 1 for SMD, and 2 for SMP. Otherwise, ISM equals 3.

These control commands are intercepted in the PNUC loop in HDS3 (line 250). The commands SMC and SMD set the value of ISM in HDS3 and then call DDS. In DDS the value of ISM causes DS(I,2) to be cleared or summed from DS(I,1). Control then returns to the ALL loop in HDS3. The command SMP sets ISM to 2, which will cause DS(I,2) to be added to DP at each X in the next execution of DDS. ISM is set to 3 each time the ALL loop is entered.

12. VAPOR DEPLETION

The vapor depletion model that is described in Appendix C is implemented in the program by subroutine VDPL. This subroutine is divided into four parts which are (in effect) entered separately. The first computes the deposition velocity, DEVP, as a function of wind speed, stability, and roughness length.

The second entry estimates the peak dosage (or concentration) and establishes the table of dosages over which the area will be integrated. The lower limit for this distribution is taken as one-tenth of the minimum dosage of interest specific in the main program. This dosage-area table can be output at the end of the program with a PEEK 6 command from the ALL question. The output option, OPO 4, will cause the contour half-widths for this distribution to be listed and then the dosage-area table.

The third entry is called for each downwind distance, and the area coverage is accumulated as a function of X. With each call a new estimate of the function of the source still airborne (SDEPL) is made and the adjusted peak value is returned. Two peak values (DP and DPA) are transmitted to the subroutine to accommodate the 2-minute correction for GB and VX. (The area distribution is based on the noncorrected value.) The other parameter values (DX, DXA, XS, and XCH) are provided to adjust the area integration when a stability change is called from the master program.

The fourth entry point lists the dosage-area distribution. This is printed by a PEEK 6 or at the end of a run with OPO 4.

The UNIVAC version of this program uses the different entry points. The PC version enters at the top and then branches to the section as directed by the indication INT. The function of the source remaining airborne (SDEPL) is printed for each distance when OPO is greater than zero and before each estimated distance when OPO equals zero.

The area is accumulated by summing the rectangular strings defined by delta-X, or DX, and the contour half-width. This is rather crude and can be improved by decreasing DX from the default value of 10. This can be changed by assigning a new value to DLX in the ALL question; this value will be augmented by the program according to the following rules:

If
$$(X \ge DX*10.)$$
 $DX = DX*10.$

with

 $X_{i+1} = X_i + DX$

except

 $X_1 = 1$

and

 $X_2 = DX$

Thus, DLX should be selected with the progression it will produce in mind. A value of two is a reasonable alternative.

13. DATA TABLES IN D2PC

The following list identifies the data tables for each subroutine in program D2PC. These variables are selected with the expectations that some users may wish to add to the present data sets or substitute of the set in these tables. The dimensions of each table are listed, and each commencent is specified for cross reference. The parameters marked with an asterisk would require logic changes in the program if these are altered. Those marked with two asterisks would require logic changes if certain items (numeric position) were changed.

HDS3

```
HMLT (6, 4, 11)
                 Height of the mixing layer (m)
      Stability categories A + F
 4
      Seasons winter to fall
      Sites specified
 11
QF (10, 3)
             Item fill weights (mg)
 10
      Items
      F111s
  3
SYSM (10) Lateral source sigma for each item (m)
SZSM (10) Vertical source sigma for each item (m)
PMMT (12) Average atmospheric pressure at each site (mm Hg)
DI (3, 17) Dosage response levels (mg-min/m^3)
      Levels (ascending dosage)
 17
      Substances
```

```
FMilT (17) Molecular weight of substances
 *RELT (10) Methods of release
**AGN (17) Substance codes (2 characters) (first three have complex logic
             control)
 *PNUC (16) Control codes (3 characters)
 *PNU (77) Parameter codes (3 characters)
            Rescan indicator for parameters
 *J (67)
  MUN (10)
             Item codes
 *IST (11)
             Stability codes (1 character)
  LOC (12)
             Site codes (3 characters)
  SEA (4)
             Season codes (3 characters)
EVAP
  AGN (15)
             Substance codes (2 characters)
  FMW (16)
             Molecular weight
  FMV (16)
             Molecular volume
                              16th space for read-in
  PP (16)
             Boiling (°K)
  A (15)
  B (15)
             Constants for vapor pressure of substances
  C (15)
  FP (15)
             Freezing point (°K)
DDS
CDS
  ALFAT (6) Alfa for Pasquill Category (A + F)
  BETAT (6) Beta for Pasquill Category (A + F)
  SY100I (6) Reference sigma Y at 100 m for instantaneous release (m)
  SY100T (6) Reference sigma Y at 100 m for continuous release (m)
  SZ100T (6) Reference sigma Z at 100 m (m)
 *Revision will require program logic changes.
**Certain items (in numeric order) will require logic changes.
```

Appendix B

```
*SY100C (2, 3) Reference sigma Y at 100 m in urban areas (m)
   2 Stability (neutral and stable)
   3 Wind speed classes
*SZ20C (2, 3) Reference sigma Z at 20 m in urban areas (m)
   2 Stability (neutral and stable)
   3 Wind speed classes
*BETAC (2, 3) Beta for urban areas
      Stability (neutral and stable)
   3 Wind speed classes
*ST (11) Stability codes (A-F, N, I, U, S, W)
 RL (3) Response level labels
UNT
 UMT (25) Input unit code (2 characters)
**UC (25)
            Conversion constant (4th is °F + °C)
  DN25 (18) Density of substances at 25 °C (18th is space for read-in)
 MNE (34)
             Standard names of units
  IK (25)
             Selects output for units input
QLIST
  IQR (36)
             Locates variable in common list by questions
  IQM (36)
             Specifies number of variables by question
  QTAB (37)
            Question list (30 characters) (37th extension of question 29)
  SYM (37)
             Symbol for variable by question
VDPL
  PT (6, 3) PT from model by stability and surface
       By stability (A + F)
    3 By surface type (flat, rolling, sea)
  ITT (12)
             Surface type by site
  FKMS (6)
             kms from model by stability (A + F)
```

*See footnote on page 70.

ZOT (12)

Roughness length by site (cm)

Blank

APPENDIX C

by Dale W. Sloup

APPENDIX C

VAPOR DEPLETION

1. INTRODUCTION

五五年 日本十二 十二日日日日日十二

After agent is released from chemical munitions, fine aerosols and gases transport with the wind and are eventually removed from the atmosphere by deposition upon many types of surfaces (water, soil, vegetation, etc.) with possibly some chemical changes occurring with time. Atmospheric turbulence, Brownian motion, impaction, and sorption are some of the processes causing agent to be dropped from the cloud and retained on surfaces.

Control Control Control

The most common mathematical techniques for consideration of the agent fall-out mechanisms and surface deposition are called the "source depletion" and "partial reflection" models. 1 These models apply to very fine aerosols and vapors of approximately 10 μ m or less, in diameter. The partial reflection approach seems to perform well near the source and is fairly easy to use. However, the "source depletion" technique has been shown to perform better for far downwind distances. For this reason, the source depletion course was followed for use in our general chemical hazard prediction model.

Chamberlain² and other investigators have presented the mathematical derivation of a depletion factor as a function of downwind distance for various continuously emitting plume type sources. However, as far as can be determined, source depletion models that characterize "instantaneous" type source releases, such as would be expected for chemical projectiles and rockets, have never been reported in the open literature. Therefore, an attempt was made to adapt the "continuous source" approach to an instantaneous release. However, this did not work out because the numerical integration became quite messy and was not followed through.

EMPIRICAL DEPLETION MODEL

Still faced with a need for an instantaneous depletion technique, an alternate empirical approach was proposed. This proposed technique and dosage requires calculation of an effective deposition velocity (ν_d) and dosage and/or concentration area coverage as a function of downwind distance. The ν_d values is easy enough to calculate, and the current D2 program is readily adaptable to computing dosage/concentration contours. Hence, this simple empirical approach was chosen for incorporation into the Chemical Hazard Prediction Methodology and is presented below.

For a surface that has perfect retention of the material reaching it, the ν_d value can be determined in terms of the wind-speed profile, friction velocity, and surface roughness length parameter as follows:

Using the wind speed profile investigated by R. Frost⁴ and represented by a power law function across stability conditions as follows:

$$u(z) = u(2) \cdot \cdot \cdot \left(\frac{z}{2}\right)^{\lambda}$$

where

u(2) is the 2-meter wind speed

 λ is the Frost power parameter

and

Using the following relationship, compute the friction velocity parameter 5 (u*)

$$u_{\star} = \lambda \cdot K_{m}^{+} \cdot u(2) \left(\frac{\pi}{2}\right)^{\lambda}$$

where

 R_{m}^{\star} is a generalized stability parameter with the following values

For near surface estimates, z is set equal to 0.01 meters since $u^* \neq 0$ at z = 0.

Now

Compute the surface deposition velocity 5 (ν_{d}) using the following formula

$$v_{\rm d} = \frac{u_{\star}^2}{u(z)} \qquad \left(1 + \frac{u_{\star}}{u(z)} \cdot {\rm g}^{-1}\right)^{-1}$$

again

using z = 0.01 for near surface estimates.

This equation is correct only for vapor adsorption material. The $\rm B^{-1}$ parameter (the dimensionless reciprocal Stanton number) can be computed as follows:

$$B^{-1} = 0.06 (196 \cdot u_{\star} \cdot z_{o})^{-0.45}$$

whe re

 \mathbf{u}^* is computed as stated above and zo is the conventional surface roughness length.

The B-1 equation above was deduced from the following formula6

$$k B^{-1} \sim 0.2 (30 R_{e_{+}})^{0.45} \cdot \sigma^{0.8}$$

Appendix C

with the following assumptions,

k (Von Karman's constant) equals 0.4, the

Schmidt number o equals 0.076.

Using

Reynolds number
$$R_{e_*} = \frac{u_* z_0}{v}$$

where

 ν is the kinematic viscosity of air and using a value of 0.153 cm^2/sec , then the following equation is obtained

$$.4 B^{-1} = 0.2 \left(30 \left(\frac{u_{*}z_{o}}{.153}\right)\right)^{0.45} \cdot 0.076^{0.8}$$

This reduces to the equation,

$$B^{-1} = 0.06 (196 u_{\star} z_{\odot})^{0.45}$$

as stated above.

Now that the technique for calculating the ν_d parameter has been presented, formulation of the source depletion factor can be expressed as follows:

The factor for the diminishing amount of material remaining airborne is defined as:

$$\frac{O(x)}{O(0)}$$

where

Q(o) is the initial amount of agent released in mg for dosage. Then the amount of material deposited within a dosage contour class can be estimated by using the following functional relationship,

$$QD(x) = \sum_{i=1}^{ND} \left[\left(\frac{D(i) + D(i+1)}{2} \right) \cdot \left(AR(i) - AR(i+1) \right) \cdot v_d \right]$$

where

D(I)'s are the dosage contour levels in ascending order, and AR(I)'s are the corresponding accumulative areas as a function of downwind distance-x for these dosage contours.

vd is the vapor deposition velocity as calculated above in meters per minute.

then

The resulting source strength factor as a function of downwind distance x can be calculated for use in the Gaussian equations as follows:

$$\frac{Q(x)}{Q(0)} = \frac{Q(0) - QD(x)}{Q(0)}$$

then, from the above equation, the axial peak dosage can be adjusted for vapor depletion for the next x-distance as follows:

$$DP(x+1) = DP(x+1) \cdot \left(\frac{Q(x)}{Q(0)}\right)$$

The above equations were presented using dosage terms. When the user asks for concentration estimates from the program, then the program logic has the following changes.

Q(o) becomes a rate of release; the D(I)'s are in terms of concentration, mg/min; and the AR(I)'s are the corresponding areas for those concentration contours. Then, the axial peak concentration is adjusted as a function of downwind distance -x as

$$CP(x+1) = CP(x+1) \cdot \left(\frac{Q(x)}{Q(0)}\right)$$

The rest of the model constants and relationships used in calculation of the ν_d parameter remain the same as for dosage.

The estimate of the fraction of material remaining airborne $\frac{Q(x)}{Q(0)}$

as a function of distance is based upon the amount of area accumulated across dosage contour classes. Hence, this method is sensitive to the number of contour levels chosen (ND) and the incrementation step of the x-distance in representing cloud coverage. These parameter values are internally controlled by the D2PC program and are designed to provide reasonable results.

We feel this approach to be a reasonable alternative for lack of a more vigorous mathematical form. The advantage is that it is not limited in use. It applies equally well to dosage or concentration predictions for partial or total dosage times and across all source release heights and types (point, volume, continuous emitting).

MODEL VALIDATION

No attempt has been made to verify this theory with actual field experimentation. However, the program has been run to compare its predicted depletion factors against estimates reported in the literature and to demonstrate the expected change as a function of stability with downwind distance.

Table C-1 provides the vertical and horizontal reference distance standard deviations and expansion exponents representing three investigators. The Hansen and D2PCA diffusion parameters are taken directly from the referenced reports; however, what are identified as Pasquill parameters are rather coarse straight-line estimates through the curves provided in reference 7. Table C-2 shows the comparison of the three diffusion sets (Pasquill, Hansen, D2PCA) to the "SLADE" depletion values extracted from continuous source depletion curves on page 205 of reference 7. For the Hansen results, a surface roughness value of z_0 = 10 cm set was used. To be compatible with the other two, a z_0 = 1 cm set of values for σ_{z100} and B should have been used. Then the results for Hansen would have followed the D2PCA predictions much closer than the Pasquill values in Table C-2.

4. CONCLUSIONS

Some conclusions that can be drawn from Table C-2 are:

- Using this empirical depletion technique, the D2PCA diffusion parameters continue to keep the amount of airborne vapor up closer to the "SLADE" estimates for stability categories A, B, and C. However, for stability categories D, E, and F, D2PCA, Hansen and Pasquill continue to hold the amount of airborne vapor up when "SLADE" shows it should be falling off significantly.
- Overall, for the first one-thousand meters all three sets of diffusion parameter do equally well in comparing with the "SLADE" estimates.
- For hazard analysis studies, it appears that this technique can be used to improve the predictions and provide safe conservative estimates across stability categories and potential diffusion values.

Table C-1. Diffusion Parameters Values Used to Compute the Results of Table C-2

Stability category	Investigator	[⊄] y100	rı,	⁰ z100	β
A	Pasquill*	25.2	0.90	18.0	1.63
	Hansen**	25.2	0.90	17.6	0.90
	D2PCAt	27.0	1.0	14.0	1.4
•	Pasquill	20.2	0.90	11.3	1.191
	Hans en	20.2	0.90	11.3	0.85
	D2 PCA	19.0	1.0	11.0	1.0
C	Pasquill	13.9	0.90	8.9	0.852
	Hansen	13.9	0.90	8.9	0.81
	D2PCA	12.5	1.0	7.5	0.90
D	Pasquill	9.02	0.90	6.5	0.682
	Hansen	9.02	0.90	6.5	0.76
	D2 PCA	8.0	0.90	4.5	0.85
2	Pasquill	6.43	0.90	4.0	0.664
	Hansen	6.43	0.90	4.0	0.73
	D2PCA	6.1	0.80	3.5	0.80
7	Pasquill	4.80	0.90	2.6	0.633
	Hansen	4.80	0.90	2.6	0.67
	D2 PCA	4.0	0.7	2.5	0.75

^{*}These estimates are straight-line estimates through the curves. 7

**Translated to reference distance of 100 meters. 8

† Taken from the earlier D2PC report.

Table C-2. Source Depletion Fraction Q(x)/Q(o) for a Wind Speed U₂ of 1 m/sec and v_d of 0.01 m/sec CONC, Values for a Continuous Source (Surface Release)

Stability category	Investigator/ Diffusion category	101	Distance 10 ²	from source 103	(meters)	105
A	Slade* Pasquill** Hansent D2PCAtt	.95 .93 .94	.80 .74 .81	.75 .68 .66	.71 .46 .46	.70 .14 .14
В	Slade Pasquill Hansen D2PCA	.92 .93 .93	.75 .71 .73	.62 .58 .56	.60 .41 .38	.59 .13 .15
С	Slade Pasquill Hansen D2PCA	.92 .93 .93	.70 .71 .71	.55 .53 .53	.39 .36 .36	.28 .12 .12 .28
D	Slade Pasquill Hansen D2PCA	.90 .93 .93	.62 .69 .68	.41 .44 .45 .38	.17 .24 .28 .26	.039 .13 .12
E	Slade Pasquill Hansen D2PCA	.90 .93 .93	.55 .59 .58	.30 .33 .35 .32	.071 .16 .19	.006 .09 .11
F	Slade Pasquili Hansen D2PCA	.90 .92 .92	.50 .53 .53	.15 .22 .23 .25	.015 .10 .11	.0005 .06 .06

^{*}Reference 7, curves on p 205

**Reference 7, diffusion curves on pp 408-409

†Reference 8, p 7

††Dispersion parameters as used in CRDC Chemical Hazard Prediction Program-D2PCA.

LITERATURE CITED

- 1. Hanna, S.R., Briggs, G.A., and Hosker, R.P., Jr. Handbook on Atmospheric Ditfusion. DOE/TIC-11223. Technical Information, U.S. Department of Energy, 1982.
- 2. Chamberlain, A.C., and Chadwick, R.C. Deposition of Airborne Radio-Iodine Vapor. Nucleonics 8, 22-25 (1953).
- 3. Pasquill, F., and Smith, F.B. Atmospheric Diffusion. pp 251-256. Third Edition. 1983.
- 4. Sutton, O.G. Micrometeorology. p 238. McGraw-Hill Book Company, New York, NY. 1953.
- 5. Webb, E.K. Aerial Microclimate. In Meteorological Monographs. pp 27-58. Volume 6, No. 28. Boston, MA. July 1965.
- 6. Garratt, J.R., and Hicks, B.B. Momentum, Heat and Water Vapor Transfer To and From Natural and Artificial Surfaces. Q. J. R., Meteorol. Soc. 99, 580-687 (1973).
- 7. Slade, D.H., Editor. Meteorology and Atomic Energy. Technical Information Center, U.S. Department of Energy. July 1968.
- 8. Hansen, F.V. Engineering Estimates for the Calculation of Atmospheric Dispersion Coefficients. Internal Report, U.S. Army Electronics Research and Development Command Atmospheric Sciences Laboratory, White Sands Missile Range, NM. September 1979. UNCLASSIFIED Report.

A Comment of the Comm

APPENDIX D

APPENDIX D

GLOSSARY

Atmospheric stability (low level)

This is a relative classification of the mixing of the air near the surface. This mixing has been measured as a standard deviation of wind direction changes (σ_A , σ_E) or, in a more indirect way, as the difference in air temperature at two reference heights. (Temperature gradient between 1/2 and 4 meters.) An even more generalized concept is used in this report based on the Pasquill stability categories. In this system, the heating or cooling of the surface is used to establish a net radiation index. These are then tabulated against windspeed to form a table of comparable mixing categories. For the Pasquill system these are identified as A through F, going from very unstable to stable with category D taken as neutral.

Breathing rate (liters/minute)

As used in these models, the breathing rate is the average volume of air aspirated per minute. The rate is usually stated in liters per minute, but must be converted to m³/min when multiplied by dosage to provide consistent units.

Broken (cloud covar)

This is a description of a sky cover of .6 to .9 (5/8 to 7/8)

Concentration (mg/m^3)

This is the quantity of a vapor or aerosol suspended in a volume of air.

Peak concentration

This term is used to describe the maximum concentration at a given distance that will result from a variable passing field.

Deposition density (mg/m^2)

This is the density of liquid or particulate contaminate that is deposited on the ground. It is employed as an assessment index and has been related to the percutaneous dose. In the current form of this relation, the percutaneous dose equals 1.62 times the deposition density raised to the 0.8 power. This relation has been derived from the short-range fallout from explosive munitions.

Dosage (mg/min/m³)

The second of th

Dosage is the integration of concentration in mg/m³ and time in minutes, also referred to as Ct. This is a mathematical concept that makes a useful exposure index to vapors and small aerosols that can be absorbed by inhalation. When the dosage is multiplied by a breathing rate and retention efficiency, the result is an inhaled dose.

Total dosage

This is the concentration time integral accumulated over the time of passage of the total cloud.

Partial dosage

If an evasive action is possible, such as donning a mask or moving out of the path of the cloud, then the exposure is to a partial dosage that is calculated from the time of release to the time the evasive action is complete. Thus, if the evasive action is accomplished in time t, the partial dosage: D(t) = 0 for x>ut + 3 SX, where SX is the standard deviation of the downwind dimension of the cloud, and u is the windspeed.

Dose (mg)

Dose is the quantity of a substance ingested into the body or placed on the body surface or clothing.

Inhaled dose

This is the quantity absorbed by the body by inhalation.

Intravenous dose

This is the amount reaching the blood stream.

Percutaneous dose

This is the amount applied to clothing or skin, or both.

Downwind length (m)

This is the length in the downwind direction across the surface of the spill. Like the evaporation time, this is assumed to be constant over the period of evaporation.

Evaporation time (min)

This is the time from the beginning of a spill to the total containment or neutralization of the agent. The model employed in SEVP2 assumes that the rate of release is constant over this period and thus is a safe-sided estimate of the total amount released.

Inhalation-deposition

When a substance with low volatility is released by explosion, both vapor and aerosol are produced. If the aerosol impacts on clothing or the skin and is not removed, a fraction will penetrate the skin and add to the dose that the body may have accumulated from inhalation. These are additive at the intravenous level and thus the intravenous dose, $D_{\rm I}$, is the response index.

Mixing layer (m)

This layer is the region above the surface where mixing tends to approach uniformity. If travel proceeds for a sufficient distance, the vertical distribution tends to become uniform within this layer. Two forms of the mixing layer are considered in this report. The best defined of these is formed by an elevated temperature inversion that forms a cap to vertical diffusion. This cap is modeled as a reflective surface that would

The second contraction of the second contrac

produce multiple reflections to approach this uniformity. The other form of the mixing boundary is the result of the inertial forces acting on the eddies formed by the surface friction layer. This has been extended from the surface itself to objects on the surface and even the terrain which would affect this mixing. The same model is used for predictive purposes. Thus, this second category is achieved by entering a value that will approximate the inertial layer. (See Table 5.)

Overcast (cloud cover) This is the description of a sky cover of 1.0 (8/8).

Rawinsonde (radiosonde)

This is balloon-borne instrumentation that is capable of measuring and transmitting the wind speed and direction, temperature, pressure, and humidity aloft during its ascension; analysis of this information can provide stability characteristics for various layers of the atmosphere.

Scattered (cloud cover) This is a description of a sky cover of .1 to .5 (1/8 to 4/8).

Skin penetration factor

This factor is the ratio of intravenous dose to percutaneous dose. The skin penetration factor is defined for a specific type of exposure and a specific type of clothing.

Source sigmas (m)

These are characteristic dimensions of the source cloud. These are stated for the three directions X,Y, and Z and are expressed as the standard deviations (SXS, SYS, SZS). Through the diluting process of diffusion, the cloud is approximated as a Gaussian distribution moving with the wind and expanding.

Source strength (mg)

This is the quantity airborne. This release can occur instantaneously as with an explosive release or over a period of time as from a spill.

Source time (min)

This is the period of time over which the substance is emitted into the air. Zero is specified for an instantaneous release and infinity (1E36) for a continuous release.

Subsidence inversion

This is a temperature inversion produced by the warming of a layer of descending air and most frequently associated with a large high-pressure system. The inversion will have its base at some point The inversion will have its base at some point above the ground and is enhanced by vertical mixing in the layer of air below. This type of inversion is often very persistent and frequently produces conditions requiring air pollution advisories.

Appendix D

89 Surface inversion (radiation inversion)

This is a temperature inversion that has the earth's surface as its base. It is an increase of temperature with height beginning at the ground, a very stable layer of air in contact with the ground, a phenomenon that is established during nighttime hours and enhanced by clear skies and light winds.

Time after release (min)

A large component of the dosage computed by program HD42 is derived from the evaporation of the liquid splash. Thus, the dosage at the time of assessment is dependent on the amount that has evaporated to that time. This adjustment is contained within the model.

Two-minute correction

It has been shown that the dosage of GB or VX vapor required to produce a given physiological effect (with a constant breathing rate) is dependent on the time of accumulation. Thus, the total dosage is not an adequate index for long exposures (>2 min). Since the time of exposure is dependent on the size of the cloud, which changes with downwind distance, a correction has been developed for the diffusion model that converts the accumulated dosage at any point to the equivalent 2-minute dosage and thus permits the 2-minute value to be used as an index. The 2-minute correction is used for GB and VX vapor except when the no-effects (or lesser physiological effects) level is being considered.

APPENDIX E
PROGRAM LISTING

APPENDIX E

PROGRAM LISTING

HDS3.FOR

```
C HAZARD DISTANCE / MASTER PROGRAM / C.G. WHITACRE
         ADAPTED TO MS-FORTRAN BY J.H.GRINER III AND RICHARD L. ZUM BRUNNEN
             CHARACTER*1 IST, MTC, AA1, AB1
  3
             CHARACTER*2 AGN, UM, AGNT, AA2, WT
             CHARACTER*3 PNU, PNUT, PNUC, MUN, MUNT, REL, RELT, LOC, LOCT, SEA, SEAT,
 6
            1PRTT.SUR
 7
             CHARACTER*12 ADH
 8
             CHARACTER*20 APRT
 9
             COMMON NQI,QT(6),TWL(6),D(10),DL(10)
10
             COMMON PR(1), DXT, HT, HML, SXS, SYS, SZS, TIVCH, UT, BR, SF, TMP, ALFA, SY100,
11
            1BETA, SZ100, Z, RC, V, QS
12
             COMMON TEVP, SA, FL, FMW, FMV, VP, BP
13
            COMMON HS, DS, TSC, VS, RDE, FP, HK, CR
14
            COMMON SLA, SLO, CC, CH, AE, PMM, ZO
15
            COMMON LOCT(1), SEAT, MUNT, AGNT, AA1, REL, MTC, AA2, SUR, WT, AB1, ADH, ADR,
16
           1AD2
17
            COMMON IPR (1), ND, IPO, I2MC, IMA, IPC, IMM, IDD, IHR, NOV, INP, MRL, NMU, ID2,
18
           1 IDEP, IMTCH, IM, IR, IL, IRL, ISM, IVD, K33, K42
19
            DIMENSION MUN(10),QF(10,3),SYSM(10),SZSM(10),AGN(18),D1(3,17)
20
            DIMENSION FMWT(17), IST(11), LOC(12), SEA(4), HMLT(6,4,11), PMMT(12),
21
           1PNU (77), J (67), K (67), RELT (10), PNUC (16), QTS (6)
22
     SINCLUDE: 'A: HMLMDR1. FOR'
23
            DATA RELT/'INS', 'EVP', 'SEM', 'VAR', 'STK', 'STJ', 'FLS', 'FIR', 'IGL',
24
           1'EVS'/
            DATA AGN/'GB', 'VX', 'HD', 'AC', 'CG', 'CK', 'GA', 'GD', 'GF', 'H1', 'H3',
25
           1'HT','LL','HY','UD','BZ','DM','NA'/
26
            DATA PNUC/'ALL', 'STP', 'RST', 'INP', 'GTO', 'RSN', 'NQI', 'SMC', 'SMD',
27
           1'SMP', 'RUN', 'TAB', '???', 'DSP', 'PEE', 'VDP'/
28
29
            DATA PNU/'TIM', 'DLX', 'HTS', 'HML', 'SXS', 'SYS', 'SZS', 'TMC', 'WND'
           1'BRT', 'SKF', 'TMP', 'ALF', 'SYR', 'BTA', 'SZR', 'SMH', 'REF', 'SEV', 'QQQ' 2'TEV', 'ARE', 'LEN', 'FMW', 'FMV', 'VAP', 'BPT', 'HST', 'DST', 'TST', 'VST'
30
31
           3'RDE', 'FRO', 'HRL', 'CRD', 'SLA', 'SLO', 'CCT', 'CHT', 'SUN', 'PMM', 'ZZO'
32
           4'LOC', 'SEA', 'MUN', 'AGN', 'REL', 'STB', 'SUR', 'WOO', 'HLD', 'RLS', 'AD3', 5'IRT', 'NDI', 'OPO', 'ZMC', 'IMA', 'OPC', 'IMM', 'IDD', 'HRS', 'NOV', 'INP', 6'MNR', 'NMU', 'NCI', 'IDE', 'IHT', 'IM', 'IR', 'IL', 'IRL', 'ISM', 'IVD',
33
34
35
36
           7'K33', 'K42'/
37
            DATA J/1,7*0.1.2*0.1.7*0.8*1.8*0.6*1.0,8*1.9*0.3*1.0.1.0.1.0/
38
            DATA MUN/'105','155','81N','500','750','M55','525','139','M23',
39
           1'4.2'/
40
            DATA IST/'A', 'B', 'C', 'D', 'E', 'F', 'N', 'I', 'U', 'S', 'W'/
41
            DATA LOC/'AAD', 'DPG', 'EWA', 'JHI', 'LBG', 'NAP', 'PBA', 'PAD', 'RMA',
42
           1'UAD', 'EUR', 'NDF'/
            DATA SEA/'WIN', 'SPR', 'SUM', 'FAL'/
43
44
            DATA 13,14,15/42,11,24/
45
            WRITE (*,*) '
46
            WRITE (*, *) '
                                              \ DOWNWIND HAZARD PROGRAM D2PC \'
47
            WRITE (*,*) '
48
      1
            D0 2 I=1,74
49
            QT(1)=0.
50
      2
            CONTINUE
```

```
52
            LOCT(I)='
 53
       3
            CONTINUE
 54
            DO 4 I=1.22
 55
            IPR(1)=0
 56
            CONTINUE
 57
            TIVCH-1.E36
 58
            DXT=10.
 59
            z=0.
 60
            NMU-1
 61
            FNMU=1.
 62
            RC=1.
 63
            V=0.
 64
            BR=25.
 65
            SF-.022
 66
            DO 5 I=1,67
 67
            K(I)=0
 68
      5
            CONTINUE
 69
            ND-0
 70
            CALL DEF (0, IRT)
 71
     C
            1. NOVICE LEVEL
 72
            WRITE (*,*) '
                               TYPE ? FOR DEFINITIONS'
 73
            CALL DEF (1, IRT)
 74
            IF (IRT.EQ.O) READ (*,'(BN, I5)', ERR=10) NOV
 75
            IF (NOV.GT.2) CALL DEF (39, IRT)
 76
            IF (NOV.GT.(-1)) GO TO 7
 77
            CALL DEF(80, IRT)
 78
            READ(*,93)LOCT(1), SEAT, MUNT, AGNT, REL, MTC, US
 79
      7
            UT-US
 80
     C
            2. LOCATION
 81
            CALL DEF (2, IRT)
 82
            IF (IRT.EQ.0) READ (*, '(A3)') LOCT(1)
 83
            DO 8 IL-1,12
 84
            IF (LOCT(1).EQ.LOC(JL)) GO TO 11
 85
            CONTINUE
 86
            WRITE (*,9)
 87
            FORMAT (' LOCATION NOT DEFINED')
 88
            CALL DEF (42, IRT)
 89
            GO TO 7
            CALL DEF (41, IRT)
 90
      10
 91
            GO TO 6
 92
            3. SEASON
 93
      11
            IF (IL.EQ.12) GO TO 14
 94
            CALL DEF (3, IRT)
 95
            IF (IRT.EQ.0) READ (*, '(A3)') SEAT
 96
            DO 12 IS=1.4
 97
            IF (SEAT.EQ.SEA(IS)) GO TO 13
 98
           CONTINUE
 99
           CALL DEF (43, IRT)
100
            GO TO 11
101
      13
            IF (K(41).EQ.O.AND.IL.NE.12) PMM=PMMT(IL)
102
            IF (IL.NE.12) GO TO 15
103
            4. HEIGHT OF MIXING LAYER
104
      14
           CALL READA (4, IRT, IA, HML)
105
            IF (IRT.LT.0) GO TO 14
```

```
IDEP=0
107
           IF (K(3).EQ.0) HT=0.
108
           IF (K(57).EQ.0) I2MC=0
109
           INQ-0
110
           IMTCH-0
111
     C
           5. MUNITION TYPE
112
           CALL DEF (5, IRT)
      16
113
           IF (IRT.EQ.0) READ (*,'(A3)') MUNT
114
           IF (MUNT.NE.'???') GO TO 17
115
           CALL DEF (45, IRT)
           GO TO 16
116
117
      17
           DO 18 IMU-1,10
118
           IF (MUNT.EQ.MUN(IMU)) GO TO 19
119
      18
           CONTINUE
120
           INQ-1
121
           6. AGENT TYPE
           CALL DEF (6, IRT)
122
      19
123
           IF (IRT.EQ.0) READ (*, '(A2)') AGNT
124
           IF (AGNT.NE.'??') GO TO 20
125
           CALL DEF (46, IRT)
126
           GO TO 19
127
      20
           DO 21 IA-1,18
128
           IF (AGNT.EQ.AGN(IA)) GO TO 22
129
      21
           CONTINUE
130
           IA-18
131
           8. RELEASE TYPE
           CALL DEF (8, IRT)
132
      22
133
           IF (IRT.EQ.0) READ (*, '(A3)') REL
           IF (REL.NE.'???') GO TO 23
134
135
           CALL DEF (48, IRT)
136
           GO TO 22
137
      23
           DO 24 IR=1,10
138
            IF (RELT(IR).EQ.REL) GO TO 25
139
      24
           CONTINUE
140
           WRITE (*,*) ' RELEASE NOT DEFINED'
           CALL DEF (48, IRT)
141
142
           GO TO 22
143
     C
           9. STABILITY TYPE
144
      25
           CALL DEF (9, IRT)
145
           IF (IRT.EQ.0) READ (*,'(A1)') MTC
146
           IF (MTC.NE.'?') GO TO 26
147
           CALL DEF (49, IRT)
           GO TO 25
148
149
           DO 27 IM=1,11
150
            IF (MTC.EQ.IST(IM)) GO TO 28
151
           CONTINUE
           WRITE (*,*) ' STABILITY NOT DEFINED'
152
153
           CALL DEF (49, IRT)
154
           GO TO 25
155
      28
           IF (IMTCH.EQ.1) GO TO 29
156
            10. WINDSPEED
157
           CALL READA (10, IRT, IA, US)
158
           IF (IRT.LT.0) GO TO 28
159
      29
160
           IF (IM.EQ.10) CALL STAB (US, IM, IL, IMM, IDD)
```

CONCROSS BUTTON OF CONTROL OF THE SAME

```
IF (IM.EQ.11) CALL WOODS (UT, ALFA, SY100, BETA, SZ100, WT)
162
           IF (IM.NE.9) GD TO 30
163
           11. ALF, SYR, BTA, SZR
164
           CALL DEF (11.IRT)
           IF (IRT.EQ.O) READ (*,*) ALFA, SY100, BETA, SZ100
165
166
      30
           IF (IMTCH.EQ.1) GO TO 83
167
           IF (IA.EQ.18) GO TO 34
168
           IF (K(24).EQ.O) FMW=FMWT(IA)
           IF (IA.LE.2.AND.K(57).EQ.0) I2MC=2-K(57)
169
170
           IF (K(55) EQ.1.OR.K(67).GT.O) GO TO 32
171
           DO 31 I=1,3
           D(I) = Dl(I, IA)
172
173
      31
           CONTINUE
174
           ND=3
175
           IRL-1
176
           IF (K(65).EQ.0) MRL=0
177
      32
           IF (IA.EQ.2.AND.REL.EQ.'INS') GO TO 34
178
           WRITE (*,33) (D(I), I=1,ND)
179
      33
           FURMAT (' DI=',10F8.1)
180
      34
           IF (IR.LT.4.OR.IR.EQ.10) NQI=1
181
           GO TO (35,35,48,48,43,43,43,43,95,35), IR
      35
182
           IF (INQ.EQ.O) GO TO 37
183
           7. SPILL OR AIRBORNE SOURCE
      36
184
           CALL READA (7, IRT, IA, QS)
185
           IF (IRT.LT.0) GO TO 36
186
           GO TO 40
187
      37
           IF (IA.GT.3) GO TO 38
188
           IF (QF(IMU, IA).GT.O.) GO TO 39
           WRITE (*.*) ' MUNITION-AGENT NOT DEFINED'
189
      38
190
           GO TO 36
191
      39
           IF (K(20).EQ.0) QS=QF(IMU,IA)
           QT(1)=QS*FNMU
192
      40
      41
193
           IF ((IR.EQ.1.AND.IA.EQ.3).OR.IR.EQ.2.OR.IR.EQ.10) WRITE (*.42)
194
           IF (IR.NE.1) GO TO 43
195
           IF (IA.EQ.2.OR.IA.GT.3.OR.INQ.EQ.1) GO TO 44
196
           12. TEMPERATURE
197
      42
           FORMAT (5x, 'SURFACE')
198
           IF (IR.EQ.9) GO TO 48
199
           CALL READA (12, IRT, IA, TMP)
200
           IF (IRT.LT.0) GO TO 41
201
           IF (IR.GT.2.AND.IR.LT.10) GO TO 48
202
           IF (IR.EQ.2.OR.IR.EQ.10) 60 TO 51
203
           TWL(1)=.08
204
           IF (K(6).EQ.O.AND.INQ.EQ.O) SYS=SYSM(IMU)
205
           IF (K(7).EQ.O.AND.INQ.EQ.O) SZS=SZSM(IMU)
206
           IF (K(5).EQ.O.AND.INQ.EQ.O) SXS=SYS
207
           IF (IA.EQ.2) GO TO 46
208
           IF (IA.NE.1) GO TO 52
209
           IF (INQ.EQ.1) GO TO 52
210
           IF (QF(IMU,1).GT.4.5E7) GO TO 45
211
           QT(1) = QT(1)*(.5+(.00782*TMP))
212
           GO TO 52
213
           OT(1) = OT(1) * (.5_+ (.0022*TMP))
214
           GO TO 52
215
      46
           IDEP=1
```

```
216
           D(1) = .44
217
           D(2)=1.76
218
           D(3) = 4.
           WRITE (*,47) D(1),D(2),D(3)
219
220
      47
           FORMAT (' EDI='3F5.2)
221
           IF (IMU.NE.9) GO TO 52
222
           IDEP-2
223
           GO TO 52
224
     C 13. NQI,Q(),QT() OR Q,QT
225
           CALL DEF (13, IRT)
226
           IF (IRT.EQ.1) GO TO 49
           IF (IR.NE.3) READ (*,*) NQI, (QTS(1), TWL(1), I=1, NQI)
227
228
           IF (IR.EQ.3) READ (*,*) QTS(1), TWL(1)
229
      49
           DO 50 I=1.NOI
230
           QT(I)=QTS(I)*FNMU
231
      50
           CONTINUE
232
           GO TO 52
233
      51
           IF (IR.EQ.2) CALL EVAP (AGNT,QT(1),PMM,UT,TMP,TWL(1),SUR,IL)
234
           IF (IR.EQ.10) CALL EVAP(AGNT,QT(1),PMM,.O1,TMP,TWL(1),SUR,IL)
235
           SXS-FL/3.
236
           SYS=SA/(FL*3.)
237
           SZS-.1
      52
238
           IF (IM.GT.6.AND.IL.NE.12.AND.K(4).NE.1) HML=HMLT(4,IS,IL)
239
           IF (IM.LE.6.AND.IL.NE.12.AND.K(4).NE.1) HML-HMLT(IM,IS,IL)
240
      53
           ISM-0
241
      54
           ISM-3
242
           IF (HML.EQ.O.) WRITE (*,55)
           FORMAT (' DEFINE HML')
243
244
           WRITE (*.56)
245
      56
           FORMAT (' ALL OTHER INPUT')
246
      57
           IER-1
           READ (*,'(A3,1X,A20)') PNUT,APRT
247
248
           READ (APRT, '(BN, F20.0)', ERR=59) PRT
249
           IER-0
250
           DO 58 I=1,16
251
           IF (PNUT.EQ.PNUC(I)) GO TO 75
252
      58
           CONTINUE
253
     C
254
      59
           DO 66 I=1,67
255
           IF (PNUT.NE.PNU(I)) GO TO 66
256
           IF (I.LT.43.0R.I.GT.53) GO TO 62
257
           READ (APRT, '(A3)') PRTT
258
           IF (I.LT.51.OR.I.GT.52) GO TO 63
259
           DO 60 II=1,67
260
           IF (PRTT.EQ.PNU(II)) GO TO 61
261
      60
           CONTINUE
262
           K(II) = 52 - I
263
           IF (II.EQ.57.AND.I2MC.NE.0) I2MC=I-50
264
           GO TO 57
265
      62
           IF (IER.EQ.0) GO TO 63
266
           READ (APRT, '(A2, EN, F18.0)', ERR=54) UM, PRT
267
           CALL UNT (UM, IA, PRT)
268
      63
           IF (I.LT.43) PR(I)=PRT
269
           IF (I.GT.42.AND.I.LT.53) LOCT(I-42)=PRTT
270
           IF (1.GT.53) IPR(1-53)=PRT
```

```
271
           IF (I.EQ.66) FNMU-PRT
272
           JSM=JSM+J(I)
273
           IF (I.EO.55.OR.I.EO.67) GO TO 68
274
           IF (I.EQ.58) K(67)=PRT
275
           IF (I.EQ.58.AND.PRT.GT. U. AND.PRT.LT. 4) WRITE (*,64)
      64
276
           FORMAT (' DEFINE NCI')
277
           IF (I.EQ.9) US-UT
278
           IF (I.EQ.47.AND.PRTT.EQ.'SEM'.OR.PRTT.EQ.'VAR') CALL DEF (-13,IRT)
279
           IF (I.EQ.20.AND.IR.GT.2) WRITE (*,65)
280
      65
           FORMAT (' DEFINE NQI')
281
           GO TO 57
282
           CONTINUE
      66
283
           WRITE (*,67)
           FORMAT (' SYM NOT FOUND')
284
      67
285
           GO TO 54
286
      68
           IF (IMA.EQ.0) WRITE (*.69)
287
      69
           FORMAT (' INPUT: DI()S')
288
           IF (IMA.EQ.0) GO TO 71
289
           WRITE (*,70)
           FORMAT (' INPUT: CI()S')
290
      70
291
           ND-PRT
292
      71
           READ (*,*) (D(I), I=1,ND)
293
           MRL=0
294
           IRL-0
295
           GO TO 54
296
      72
           NQI-PRT
           WRITE (*.73)
297
298
      73
           FORMAT (' INPUT: Q() (MG), TQ() (MIN)')
           READ (*,*) (QT(I), TWL(I), I=1, NQI)
299
300
           DO 74 I=1.NQI
301
           QTS(I) = QT(I)
302
      74
           CONTINUE
303
           GO TO 54
      75
304
           NIO=(-PRT)
305
           IF (I.EQ.13) NIQ-0
306
           IF (I.EQ.14) NIQ-PRT
           IF (I.GT.11.AND.1.LT.15) CALL DEF(40,NIQ)
307
           IF (I.EQ.16) IVD-PRT
308
309
           if (i.eq.4.or.i.eq.5) Call Def (NiQ,irt)
310
           GO TO (77,89,1,59,6,7,72,76,76,76,78,54,54,54,90,57), I
311
      76
           ISM=I-8
312
           IF (I.EQ.10) GO TO 57
313
           CALL DDS
           GO TO 54
314
      77
315
           IF (JSM.GT.0) GO TO 7
316
      78
           IF (ND.GT.0) GO TO 80
           IF (IMA.EQ.0) WRITE (*.79)
317
318
      79
           FORMAT (' DEFINE NDI')
319
           IF (IMA.GT.0) WRITE (*,64)
320
           GO TO 57
321
           IF (IMA.NE.2.OR.IA.NE.18) GO TO 81
      80
322
           14. MOLECULAR WEIGHT
     C
323
           CALL DEF (14, IRT)
324
           IF (IRT.EQ.O) READ (*,*) FMW
325
           IF ((FNMU-NMU).GT.O.) GO TO 96
      81
```

```
326
            WRITE (*,82) NMU, MUNT, AGNT, REL, UT, TMP, LOCT(1), SEAT, MTC
327
            FORMAT (//I5, ' MUN: ',A3,2X, 'AGN: ',A2,2X, 'REL: ',A3,2X, 'WND=',F4.1,
           1'(M/S)',2X,'TMP=',F4.1,'(C)',2X,A3,'-',A3,1X,'STB:',A1)
328
329
      98
            IF (IA.EQ.3.AND.IR.EQ.1) IDEP=-1
330
      83
            IF (IR.LE.4.OR.1R.GT.8) GO TO 84
331
            CALL PLRS (UT, TMP, PMM, IL, IM, IR, O., HT, HML, IPC, IRTP)
332
      84
            IF (HT.GT.HML) WRITE (*,85)
333
            FORMAT (' HEIGHT OF RELEASE IS GREATER THAN MIXING LAYER')
334
            IF (QT(1).EQ.O.) WRITE (*.86)
335
            FORMAT(' THE SOURCE STRENGTH IS SET AT ZERO')
336
            IF (UT.EQ.O.) WRITE (*,88)
337
            IF (HML.EQ.O..OR.HT.GT.HML.OR.QT(1).EQ.O..OR.UT.EQ.O.) GO TO 54
338
            IF (IVD.EQ.1.AND.IL.EQ.12) GO TO 91
339
            IF (IDEP.EQ.-1.AND.IM.EQ.11) GO TO 99
340
            IF (IVD.EQ.1.AND.IM.GT.6) GO TO 94
341
      92
            K33 = K(33)
342
            K42 = K(42)
343
            IF (IMA.EQ.0) CALL DDS
344
            IF (IMA.GT.0) CALL CDS
345
            IF (IMTCH.EQ.1) GO TO 87
346
            IF (IPR(1).EQ.0) GO TO 53
347
            CALL DEF ((-IPR(1)), IRT)
348
            GO TO 7
349
      87
            WRITE (*,*) ' INPUT: STB'
            READ (*,'(A1)') MTC
350
            WRITE (*,*) ' INPUT: WND, HML, TMC'
351
352
            READ (*, *) US, HML, TIVCH
353
            GO TO 26
354
            FORMAT (' DEFINE WND')
      88
            IF (PRT.EQ.1.) WRITE(*,'(1P2F10.3)')(QT(I),TWL(I),I=1,6)
IF (PRT.EQ.2.) WRITE(*,'(1P2E10.3)')(D(I),DL(I),I=1,10)
355
356
357
            IF (PRT.EQ.3.) WRITE (*, '(2(A5, 1PE10.3))')
358
          S(PNU(I), PR(I), I=1, I3)
359
           IF (PRT.EQ.4.) WRITE(*, '(A5.A4)')
360
          $(PNU(I+42),LOCT(I),I=1,I4)
361
            IF (PRT.EQ.5.) WRITE(*,'(2(A5, I6))')
362
          $(PNU(I+53), IPR(I), I=1, I5)
363
    C THE FOLLOWING CALL IS A DUMMY CALL THE ONLY IMPORTAIN VARIABLE IS
364 C LAST ONE (4),
365
            366
          1DD, DD, DD, DD, DD, DD, DD, 4)
367
           GO TO 54
368
     C
           29. FROST PROFILE EXP AND ROUGHNESS LENGTH
369
      91
           CALL DEF(29, IRT)
370
           IF (IRT.EQ.0) READ(*,*) FP.20
371
           GO TO 92
372
      93
           FORMAT (A3, 1X, A3, 1X, A3, 1X, A2, 1X, A3, 1X, A1, 1X, BN, F10.0)
373
      94
           WRITE (*, *) ' VAPOR DEPLETION ONLY DEFINED FOR STABILITIES A-F'
374
           GO TO 53
375
      95
           CALL IGLO (QTS, TWL, NQI, IMU, IA, IR)
376
           IF (IR.EQ.9) GO TO 53
377
           GO TO 49
378
      96
           WRITE(*,97) FNMU, MUNT, AGNT, REL, UT, TMP, LOCT(1), SEAT, MTC
379
           FORMAT(//F5.2, 'MUN:',A3,2X,'AGN:',A2,2X,'REL:',A3,2X,'WND=:',
380
          $F4.1,'(M/S)',2X,'TMP=',F4.1,'(C)',2X,A3,'-',A3,1X,'STB:',A1)
```

381 382	99	GO TO 98 WRITE(*,*) '	INSTANTANEOUS	RELEASE	OF	HD	IN	WOODS	NOT	DEFINED'	
383		GO TO 53									
384	89	STOP									
385		END									

EVAP3. FOR

```
EVAPORATION FROM A PUDDLE W/AREA W/STILL AIR /CGW
 2
           SUBROUTINE EVAP (AGNT,QT,PMM,U,TC,TS,SUR,IL)
 3
           COMMON EDM (52), QS, TEVP, SA, FL, FMWT, FMVT, VP, BPT, ED2 (50)
 4
           CHARACTER*3 SUR
           CHARACTER*2 AGN, AGNT
           DIMENSION AGN(25), FMW(25), FMV(25), BP(25), A(26), B(26), C(26), FP(26)
 7
          DATA AGN/'GB','VX','HD','AC','CG','CK','GA','GD','GF','H1','H3',
1'HT','LL','HY','UD','QL','DF','DC','TC','PR','IP','ZS','KB',
 8
 9
          1'Md','Md'/
10
          DATA FMW/140.1,267.4,159.1,27.02,98.92,61.48,162,18,182.18,180.2,
11
          1170.08,204.54,189.4,207.35,32.05,60.1,235.3,100.0,132.9,119.0,
12
          179.1,60.09,46.07,145.7,0.,0./
          DATA FMV/150.3,342.2,149.7,39.6,70.4,51.4,188.,211.4,196.8,184.3,
13
14
          1202.8, 150., 130.1, 34.5, 81.7, 332.37, 81.93, 105.4, 79.5, 89.3, 81.9,
15
          162.3.208.0.0..0./
16
          DATA BP/431.,571.,490.,298.7,281.4,285.8,518.,471.,512.,467.,529.,
17
          1501.,463.,386.6,337.1,517.7,372.7,439.6,348.8,388.3,355.2,
18
          1351.3.463.1.0..0./
19
          DATA A/8.5916, 7.281, 7.47009, 7.7446, 7.460, 8.6642, 8.305, 10.1174,
20
          110.8872,9.0715,8.986,0.,6.40361,9.0347,8.2223,6.52001,7.5444,
21
          17.2442,7.18757,7.05878,7.74144,8.17753,8.6883,0.,0.,0./
22
          DATA B/-2424.5,-2072.1,-1935.47,-1453.1,-1289.2,-1654.6,-2820.,
23
          1-3136.,-3590.5,-2890.7,-3232.,0.,-1237.037,-2348.18,-1799.31,
24
          1-1428.57,-1577.8,-1669.7,-1384.18,-1385.39,-1360.183,-1630.863,
25
          1-2663.33.0..0..0./
26
          DATA C/273.,172.5,204.2,273.,273.,273.,273.,273.,273.,273.,
27
          1273.2,273.,155.2,273.,273.,147.8,238.6,216.1,245.567,216.338,
28
          1197.593,229.581,268.48,0.,0.,0./
          DATA FP/-56.,-51.,14.45,-13.3,-128.,-6.9,-50.,-42.,-30.,-34.,
29
          1-3.7,-14.,-18.,1.4,-58.,-45.6,-36.9,33.,-105.,-42.,-85.8.-110.5.
30
31
          1-39.,0.,0.,0./
32
           IF(U.EQ.0) U=.03
33
          DO 10 IA=1,25
34
           IF(AGNT.EQ.AGN(IA)) GO TO 15
35
      10 CONTINUE
36
           IA=26
37
      15 IF (IL.NE.12) GO TO 40
38
    C
           16. ATMOSPHERIC PRESSURE
39
      20 CALL READA (16, IRT, IA, PMM)
40
           IF (IRT.LT.0) GO TO 20
41
    C
           17. SURFACE CODE
42
      40 CALL DEF(17, IRT)
43
           IF(IRT.EQ.0) READ(*, '(A3)') SUR
44
           18. TIME OF EVAPORATION
45
      60 CALL READA (18, IRT, IA, TEVP)
46
          IF (IRT.LT.0) GO TO 60
47
          P=PMM/760.
48
          TA=TC+273.
          RHOA=.3487*P/TA
49
50
          FMUA=EXP (4.36+.002844*TA) *1.E-6
```

14.5.5.5.5.5. TANKER OF THE PARTY OF THE PAR

0.0

```
51
           SCD-FHUA/RHOA
 52
           IF (SUR.EO.'GRA') GO TO 120
53
           IF (SUR.EQ.'NPR') GO TO 130
 54
           IF (SUR.EQ.'NDF') GO TO 80
 55
           WRITE(*.70)
       70 FORMAT (' SURFACE CODE NOT DEFINED')
 56
 57
           CALL DEF (57, IRT)
 58
           GO TO 40
59
           19. AREA OF WETTED SURFACE
    C
 60
           CALL READA (19, IRT, IA, SA)
 61
           IF (IRT.LT.0) GO TO 80
 62
           20. LENGTH OF SURFACE DOWNWIND
 63
      100 CALL READA (20, IRT, IA, FL)
           IF (IRT.LT.0) GO TO 100
 64
           GO TO 150
 65
 66
      120 SA=.153E-6*QT
 67
           GO TO 140
      130 SA=1.21E-6*QT
 68
 69
      140 FL=SA**.5
 70
     150 IF (IA.LT.26.AND.IA.NE.12) GO TO 180
 71
           21. FMW.FMV.VAP.BPT
 72
           CALL DEF (21, IRT)
 73
           IF (IRT.EQ.0) READ(*,*) FMWT, FMVT, VP, BPT
 74
           IF (IRT.EQ.0) IVP-1
 75
           IF (VP.GT.O.) GO TO 170
           WRITE (*.*) ' INPUT ANTOINE CONSTANTS: A,B,C, FP (DEG C)'
 76
 77
           READ(*,*) A(26), B(26), C(26), FP(26)
 78
           IVP= (-1)
      170 IF (IVP) 185,185,205
 79
 80
      180 FMWT=FMW(IA)
 81
           FMVT=FMV(IA)
82
           BPT=BP(IA)
      185 IF (TC.GT.FP(IA)) GO TO 200
 83
84
           WRITE (*, 190)
85
      190 FORMAT (' TEMPERATURE LESS THAN FREEZING')
86
           TS-1.E36
87
           QT-0.
88
           RETURN
      200 VP=10.**(A(IA)+B(IA)/(TC+C(IA)))
89
90
      205 IF (VP.LT.PMM) GO TO 230
           WRITE(*,210)
91
92
      210 FORMAT (' TEMPERATURE GREATER THAN BPT')
93
           TS=.1
94
           RETURN
95
      230 TS=TEVP
96
           FD=TA**1.5*(.03448+1./FMWT)**.5/P
97
           D=FD*.0043/(3.1034+FMVT**.3333) **2
98
           RE=FL*U/SCD*1.E4
99
           FJM=.036/RE**.2
100
           IF (RE.LE.20000.) FJM=.664/RE**.5
101
           GM=U*RHOA*3.448
102
           FKG=GM*FJM/(SCD/D) **.667
103
           EVR=FKG*FMWT*VP/PMM*6.E8
104
           AK=.1025*TA/BPT**.5
           OM=(1.075*AK**(-.1615))+2.*(10.*AK)**(-.74*ALOG10(10.*AK))
105
```

```
106
            CD=1.18*FMVT**.3333
            DS=FD*.00205/(OM*((3.711+CD)/2.)**2)
107
108
            FLC=(4.*SA/3.14159)**.5
109
            RES-FLC*.03/SCD*1.E4
            EVRS=292.*(1.+.51*RES**.5*(SCD/DS)**.3333)*ALOG(1./(1.-VP/PMM))*
110
111
           1FMWT/TA*DS/FLC*2./3.14159*1000.
            IF (EVRS.GT.EVR) EVR=EVRS
112
113
            IF (EVRS.EQ.EVR) WRITE (*, 240)
       240 FORMAT (' STILL AIR')
114
               VPR='E9.3/,' Q='E9.3,'(MG/MIN-SQ M) AREA='E'

VPR='E9.3/,' Q='E9.3,'(MG) '3HQ'=E9.3,'(MG) ',

TEV='E9.3,'(MIN)')
       250 FORMAT (1X,A3,' EVR='1PE9.3,' (MG/MIN-SQ M) AREA='E9.3,' (SQ M)',
115
116
117
            Q-SA*TEVP*EVR
118
119
             TS-TEVP
120
             IF (Q.LE.QT) GO TO 260
121
            TS-QT/EVR/SA
122
            Q=QT
            WRITE (*, 250) SUR, EVR, SA, VP, QT, Q, TS
123
       260
124
            QT-Q
125
            RETURN
126
            END
```

37G3.FOR

```
AXIAL DOSAGE/ SEMI-CONT/ VAR SOURCE/ VAR MET ORG CGW
           SUBROUTINE DDS
 3
          CHARACTER*1 ST.MTC.AA1.AB1
          CHARACTER*2 AGNT, WT, AA2, CST, 12
          CHARACTER*3 MUNT, REL, LOCT, SEAT, SUR, 13, 14, 15
 6
          CHARACTER*12 ADH.RL
 7
          COMMON NQI,QT(6),TWL(6),D(10),DL(10)
 8
           COMMON PR(1),DXT,HT,HML,SXS,SYS,SZS,TIVCH,UT,BR,SF,TMP,ALFA,SY100,
 9
          1BETA.SZ100,Z,RC,V,QS
10
          COMMON DDM (12), FP, DDM1 (8), ZO, LOCT (1), SEAT, MUNT. AGNT. AA1. REL.
11
                  MTC, AA2, SUR, WT, AB1, ADH, ADR, AD2
12
          COMMON IPR (1), ND, IPO, I2MCS, IMA, IPC, IMM, IDD, IHR, NOV, INP, MRL, ID1,
13
          11D2, IDEP, IMTCH, IM, IR, IL, IRL, ISM, IVD, K33, K42
14
          DIMENSION SY100T(6), SZ100T(6), SY100I(6), ALFAT(6), BETAT(6), ST(11),
15
          1SY100C(2,3),SZ20C(2,3),BETAC(2,3),TWLS(6),AR(10),Y(10),VF(2),CI(2)
16
          2.S(2).RL(3).DS(31,2)
17
          DATA ALFAT/1.,1.,1.,.9,.8,.7/
18
          DATA BETAT/1.4,1.,.9,.85,.8,.75/
19
          DATA SY1001/9.,6.33,4.8,4.,3.,2./
20
          DATA SY100T/27.,19.,12.5,8.,6.1,4./
          DATA SZ100T/14.,11.,7.5,4.5,3.5,2.5/
21
22
          DATA SY100C/41.19,31.18,66.56,30.98,26.17,29.33/
23
          DATA SZ20C/3.,1.652,.797,1.934,.705,1.242/
          DATA BETAC/1.344,.755,1.218,.949,1.182,1./
24
          DATA ST/'A', 'B', 'C', 'D', 'E', 'F', 'N', 'I', 'U', 'S', 'W'/
25
26
          DATA VF, CI, S/. 13, 0, . 454, . 262, 2.38, 2.24/
27
          DATA 14,15/'EDI','EDS'/
          DATA RL/'NO EFFECTS ','NO DEATHS
28
                                                  '.'1% LETHALITY'/
29
           IF (ISM.GT.1) GO TO 2
30
          DO 1 I=1,51
31
          DS(I,2) = (DS(I,1) + DS(I,2)) *ISM
     1
32
          RETURN
33
     2
           IF (IMTCH) 3,3,7
34
     3
          DX-DXT
35
          DO 4 I=1.ND
36
          AR(I)=0.
37
     4
          DL(I)=ALOG(D(I))
          K=1
38
39
          DLDG-1.
40
          DLDGS=1.
41
          x=0.
42
          TWHML=HML+HML
43
          IC-ND
44
          MXLF=0
45
          XX=0.
46
          XY-O.
47
          XZ=O.
48
          XS-0.
49
          DPMX=0.
50
           TRTP-1
```

```
IF (IR.GT.4.AND.IR.L..8) IRTP=0
51
52
           DPL=-87.5
53
           DPLS=-87.5
54
           I2MC=I2MCS
55
           TOS=0.
56
           ORMX=0.
57
           SDEPL-1.
58
           QTTL-0.
 59
           DO 5 I=1,NQI
60
           QTTL=QTTL+QT(I)
           TWLS(I) = TWL(I) *60.
61
           OR=OT(I)/(TWLS(I)-TOS)
62
63
           IF (QRMX.GT.QR) GO TO 5
 64
           QRMX-QR
 65
           TQ2=TWLS(I)
 66
           TQ1-TQS
67
           TQS=TWLS(I)
 68
           TOMXS = (TQ2 - TQ1)/2. + TQ1
 69
           IF (IDEP) 6.7.7
 70
           CALL HD42
           IF (QT(1).EQ.O.) RETURN
 71
           GO TO 11
 72
 73
      7
           INTCH-0
 74
           IF (1M.EQ.9.OR.IM.EQ.11) GO TO 11
 75
           IF (IM.LE.6) GO TO 9
 76
           IF (IM.LE.8) GO TO 10
           WRITE (*,8)
 77
 78
           FORMAT (' MET CODE NOT DEFINED')
 79
           RETURN
 80
           IF (TOMXS.LE.2.4) SY100-SY100I(IM)
 81
           IF (TOMXS.GT.2.4) SY100=SY100T(IM)
 82
           S2100=S2100T(IM)
 83
           ALFA=ALFAT (IM)
 84
           BETA-BETAT (IM)
 85
           GO TO 11
           IF (UT.LE.2.235) I=1
 86
      10
 87
           IF (UT.GT.2.235.AND.UT.LE.4.47) I=2
 88
           IF (UT.GT.4.47) I=3
 89
           MC=IM-6
 90
           SY100-SY100C (MC, I)
           SZ100=SZ20C (MC, I) *5**BETAC (MC, I)
 91
 92
           ALFA=.5
           BETA-BETAC (MC, I)
 93
 94
      11
           U=UT
 95
           XCH-1.E36
 96
           IF (TIVCH.NE.1.E36) XCH=U*TIVCH*60.+X
 97
           IF (X.LE.O.) X=1.
           IF (SXS.GT.0.) XX = (SXS/.1522)^{**}(1./.9294) - X
 98
99
           IF (SYS.GT.O.) XY=100.*(SYS/SY100)**(1./ALFA)-X
100
           IF (SZS.GT.O.) XZ=100.*(SZS/SZ100)**(1./BETA)-X
101
           WRITE (*.12)
           FORMAT (/4X,'Q(MG)',3X,'TS(MIN)',2X,'HTS(M)',3X,'HML(M)',3X,
102
103
          1'SXS(M)',3X,'SYS(M)',3X,'SZS(M)')
104
           CST=ST(IM)
105
           IF(JM.EQ.11) CST-WT
```

```
106
            WRITE(*,13) QT(1),TWL(1),HT,HML,SXS,SYS,SZS,CST
107
      13
            FORMAT (1x, 1PE9.3,6(1x, E8.2), 2x, A2)
108
            IF (NQI.EQ.1) GO TO 15
109
            DO 14 I-2, NQI
            WRITE(*,13) QT(I),TWL(I)
110
111
      14
            CONTINUE
            IF (IVD.EQ.1) CALL VDPL(QTTL,SY,SZ,D(1),X,DX,DXA,XS,XCH,DP,
112
      15
113
           1DPA, SDEPL, 1)
            IF (IDEP.GE.1) WRITE (*, 18) BR, SF
114
115
            IF (I2MC.GT.O) WRITE (*, 103)
116
            IF (ISM.EQ.2) WRITE (*, 105)
117
            IF (IPO.LT.1.OR.IPO.EQ.4) GO TO 25
118
            WRITE (*, 16)
            FORMAT (/3x, 'ALFA', 5x, 'SYR', 4x, 'BETA', 5x, 'SZR', 5x, 'XY', 6x, 'XZ')
119
120
            WRITE (*,17) ALFA, SY100, BETA, SZ100, XY, XZ, UT
121
      17
            FORMAT (1X,7(1PE8.2))
122
            FORMAT (/' BRT=',F4.0,'
                                        SKF=',1PE8.2)
      18
123
            12='DP'
124
            IF (IDEP.GT.0) 12-'ED'
125
            13-1
126
            IF (I2MC.GT.0) 13='2MC'
127
            IF (IPO.NE.3) GO TO 21
128
            WRITE(*,19) (D(I),I=1,ND)
129
      19
            FORMAT (/6x, 'DOSAGE CONTOURS', 10F5.0)
130
            WRITE(*,20) 12,13
131
      20
            FORMAT (/7x, 'x', 7x, A2, A1, 3x, 'CONTOUR HALF-WIDTH')
132
            GO TO 25
133
      21
            IF (IDEP.EQ.0) WRITE(*,24) 12,13,13
            IF (IDEP.GT.0) WRITE(*,24) 12,13,13,14,15
134
135
      24
            FORMAT (/7X, 'X', 7X, A2, A1, 7X, 'RF', 7X, A3, 7X, A3, 7X, A3)
            IF (ISM.EQ.2) WRITE(*,100)
136
137
      25
            IF (X.GT.XCH) X=XCH
138
            B-X/U
139
            IIND=0
140
            IF (IRTP.GT.0) GO TO 26
            CALL PLRS (U, TMP, PMM, IL, IM, IR, X, HT, HML, IPC, IRTP)
141
142
      26
            DXA-DX
143
            IF (X.GE.(DX"10.)) DX=DX*10.
144
            DXA-DXA+DX
145
            SX=.1522*(XX+X)**.9294
146
            SY=SY100*((X+XY)*.01)**ALFA
            SZ-SZ100*((X+XZ)*.01)**BETA
147
            IF (IVD.EQ.1.AND.X.EQ.1) CALL VDPL(QTL,SY,SZ,D(1),X,DX,DXA,XS,
148
149
           1XCH, DP, DPA, SDEPL, 2)
150
            DP-0.
            IF (12MC.EQ.0) GO TO 27
151
152
            A=1./(1.414*5X)
153
            G=.7979*SX/U
154
            H=.5/(SX*SX)
155
            TSX=SX/U
156
            IT-0
157
            TTO=B+TOMXS
158
            TT1=TT0-60.
159
            TT2-TT1+120.
160
      27
            TSZSQ=SZ*SZ*2.
```

```
161
           HPZ-HT+Z
162
           HM2-HT-Z
163
           VT=V*X/U
164
           FAC=0.
165
           HML2=1.E36
           ARG= (HMZ-VT) **2/TSZSQ
166
167
           IF (ARG.LT.87.) FAC=FAC+EXP(-ARG)
168
           ARG= (HPZ-YT) **2/TSZSQ
169
           IF (ARG.LT.87.) FAC=FAC+RC/EXP(ARG)
170
           ZFAC=0.
171
           IF (HML.GT.1.E10.OR.MXLF.EQ.1) GO TO 30
           DO 28 JJ=1,20
172
173
           SMHML=TWHML*JJ
174
           ARG= (SMHML-HPZ+VT) **2/TSZSO
           IF (NOV.EQ.4) WRITE(*,*) 'ARG',ARG
175
176
           IF (ARG.GT.87.) GO TO 29
177
           ZFAC=ZFAC+RC**(JJ-1)/EXP(ARG)
178
           ARG= (SMHML-HMZ+VT) **2/TSZSO
179
           IF (ARG.LT.87.) ZFAC=ZFAC+RC**JJ/EXP(ARG)
           ARG~ (SMHML+HMZ-VT) **2/TSZSO
180
           IF (ARG.LT.87.) ZFAC=ZFAC+RC**JJ/EXP(ARG)
181
182
           ARG= (SMHML+HPZ-VT) **2/TSZSQ
           IF (ARG.LT.87.) ZFAC=ZFAC+RC**(JJ+1)/EXP(ARG)
183
      28
184
           IF ((FAC+ZFAC).NE.O.) HML2=(2.5066283*SZ)/(FAC+ZFAC)
      29
           IF (HML.GT.HML2.AND.(HML-HML2).LT.1) MXLF=1
185
186
      30
           RF=(FAC+ZFAC)/2.
187
           IF (IIND) 33,33,31
188
      31
           TTO=B-TSX-TSX
189
            TT1-TT0
190
           TT3=B+TWLS(NQI)+TSX+TSX
191
           TT3S=TT3
192
           TT3=TT3-120.
193
           DTT-(TT3-TT0)/30.
194
            IF (DTT.LT.10.) DTT=10.
195
           TT2=TT1+120.
196
           DOS-C.
197
           IF (DTT.LT.120.) GO TO 33
198
           TT2=TT1+DTT
199
      33
           TWLT-O.
200
           DLDP-0.
           DO 63 ITWL=1,NQI
201
202
           TS=TWLS(ITWL)-TWLT
203
           IF (MXLF) 35,35,34
204
           C=QT(ITWL)/(300.79539*U*TS*SY*HML)
      34
205
206
      35
           C=QT(ITWL)"RF/(376.991*U*TS*SY*SZ)
207
           IF (12MC.GT.0) GO TO 37
208
           DP=DP+C*2.*TS
209
           GO TO 63
210
      37
           T1=TT1-TWLT
211
           IF (T1) 38,39,39
212
      38
           T1-0.
213
      39
           T2-TT2-TWLT
214
           IF (T2) 63,63,40
215
      40
           1=3
```

Sand Sept. 1. Special Sept. 1. Special Sept.

SHALL POSTOR DOMESTIC DESCRIPTION

```
216
            PT1-T1
217
            PT2=T2
218
            P=T2-TS
219
            R=T1-TS
            IF (P) 42,42,41
220
            IF (R) 44,43,43
221
      41
      42
222
            I=1
223
            GO TO 45
224
      43
            I=2
225
            GO TO 45
226
      44
            T2-TS
227
            R-0.
      45
            E=X-U*T2
228
229
            EE-E*E
230
            F=X-U*T1
231
            FF-F*F
232
            W= (T2-B) *ERFF (E*A)
233
            CC=(T1-B)*ERFF(F*A)
234
            ARG1-EE*H
235
            ARG2=FF*H
236
            IF (ARG1-82.6) 47,47,46
237
      46
            ARG1=0.
238
            GO TO 49
239
      47
            ARG1=EXP (-ARG1)
240
      48
            ARG2=EXP (-ARG2)
241
            GO TO 51
242
      49
            IF (ARG2-82.6) 48,48,50
243
      50
            ARG2=0.
244
      51
            DD=G* (ARG1-ARG2)
245
            GO TO (52,54,52,54), I
246
      52
            QQ= (T2-T1) *ERFF (X*A)
247
            XTERM=C* (QQ-W+CC+DD)
248
            IF (I-3) 62,53,94
249
      53
            PART-XTERM
250
            I=4
251
            T2-PT2
252
            T1=TS
253
            GO TO 45
      54
            ARG3=X-U*P
254
255
            ARG4=X-U*R
256
            HH=(T2-B-TS)*ERFF(ARG3*A)
257
            PP= (T1-B-TS) *ERFF (ARG4*A)
258
            ARG3= (ARG5 **2) *H
            ARG4= (ARG4**2) *H
259
260
            IF (ARG3-82.6) 56,56,55
261
      55
            ARG3=0.
            GO TO 58
262
      56
            ARG3=EXP(-(ARG3))
263
      57
            ARG4=EXP(-(ARG4))
264
265
            GO TO 60
266
      58
            IF (ARG4-82.6) 57,57,59
267
      59
            ARG4=0.
            GG#G* (ARG3-ARG4)
268
      60
269
            XTERM=C* (HH-PP-W+CC-GG+DD)
270
            IF (I-4) 62,61,94
```

```
271
      61
           T1-P11
277
           1-3
273
           XTERM=XTERM+PART
274
      62
           DLDP-DLDP+XTERM
275
           TWLT-TWLS (ITWL)
276
      63
           CONTINUE
277
           DPA=DP
278
           IF (I2MC.EQ.0) GO TO 75
279
           IF (IIND) 64.64.65
280
      64
           IIND-1
           TDLDP-DLDP+0.
281
282
           GO TO 31
      65
283
           DP-DP+DLDP
284
           IF (IT) 66,56,67
285
      66
           IT-1
           TT2C=TT2-TT0
286
287
           GO TO 71
288
      67
           TT10=TT1-TT0
289
           TT20-TT2-T10
290
           TT21-TT2-TT1
291
           TT121=TT2C+TT2-TT1
292
           TT10P=TT2C**, 274
293
           TT20P=TT121**.274
           TT21P=TT21**.274
294
           DELDC=.2696*(D0*(TT20P-TT10P))
295
296
           IF (DELDC-DLDP) 69.68,70
297
      68
           TT2C=TT121
298
           GO TO 71
299
      69
           DPC=DPS+DELDC
           TT2C=(((DPC*TT2OP)+((DLDP-DELDC)*TT21P))/DP)**3.6496
300
301
           TT2C=((DLDP/TT21)*TT20*TT20P)+((DPS-(DLDP/TT21)*TT10)*TT10P)
302
      70
303
           TT2C=(TT2C/DP) **3.6496
304
      71
           DPS-DP
           DO-DP/(.2696*(TT2C**.274))
305
           IF (DOS-DO) 72,72,73
306
      72
307
           TT2CS=TT2C+0.
308
           DOS-DO
309
      73
           TT1=TT2
310
           IF (TT2-TT3S) 32,74,74
311
      74
           DLDG-.2696*TT2CS**.274
312
           IF (DLDG.LT.1.) DLDG=1.
313
           DPA-DP
314
           DP-DP/DLDG
           IF (DP.LT.TDLDP) DP-TDLDP
315
      75
           IF (IDEP.LT.1) GO TO 76
316
317
           DPA=DPA*VF(IDEP)
           DOSI = DP*VF (IDEP)
318
           DOSIS=QT(1) *SF*CI(IDEP) * (U/X) **S(IDEP) *1000/BR
319
320
           DP=(DOSI+DOSIS)
321
           IF (IVD.EQ.1) CALL VDPL(QTTL,SY,SZ,D(1),X,DX,DXA,XS,
322
           1XCH, DP, DPA, SDEPL, 3)
323
           IF (K.LT.52) DS(K,1)=DP
324
           IF (ISM.EQ.2) DP=DS(K,2)+DP
           IF (DP.LE.O.) GO TO 83
325
```

```
326
           DPL-ALOG (DP)
327
           IF (XS.EQ.O..OR.DPL.GE.DPLS) GO TO 83
328
           IND-1
329
           IF (IC-MRL) 84,84,77
330
      77
           IF (DPMX_LT.D(IC)) GO TO 78
           IF (DP.GT.D(IC).OR.DPLS.LT.DL(IC)) GO TO 84
331
332
           XL=ALOG(X)
333
           XLS=ALOG(XS)
334
           XINT=EXP(XLS+(XL-XLS)*(DL(IC)-DPLS)/(DPL-DPLS))
           IF (IVD.EQ.1) WRITE(*,'(F5.2)') SDEPL
335
           IF (IRL.EQ.O) WRITE(*,101) XINT,D(IC)
336
337
           'F (IRL.EQ.1) WRITE(*,102) XINT,RL(IC)
           IF (D(IC).EO.1.E36) WRITE(*.79)
338
      78
339
           FORMAT (' RESP NOT DEF')
340
           IC=IC-1
           IF (IC.GT.1.OR.I2MC.LT.2) GO TO 81
341
342
           DPLS=ALOG(EXP(DPLS)*DLDGS)
           DPL=ALOG (DP*DLDG)
343
344
           12MC=0
345
           IF (IC.GT.MRL) WRITE (*,80)
           FORMAT (' W/O 2-MINUTE CORRECTION')
346
      80
347
      81
           IF (IC-MRL) 84,84,77
348
      83
           IND=0
349
           I2MC=I2MCS
350
           IF (DP.LT.DPMX) GO TO 84
351
           DPMX=DP
352
           XDMX=X
353
      84
           IPOP1-IPO+1
354
           GO TO (92,85,87,88,92), IPOP1
355
      85
           IF (RF.EQ.1..OR.MXLF.EQ.1) GO TO 86
356
           WRITE (*,98) X,DP,RF
357
           GO TO 92
358
      86
           WRITE (*, 98) X, DP
359
           GO TO 92
360
      87
           IF (IDEP.EQ.O) WRITE (*,98) X,DP,RF,DLDG
           IF (IDEP.GE.1) WRITE (*,98) X,DP,RF,DLDG,DOSI,DOSIS
361
362
           GO TO 92
      88
           IF (DP.LT.D(1)) GO TO 92
363
364
           DO 89 IY=1,ND
365
           ARG-DPL-DL(IY)
366
           IF (ARG.LT.O.) GO TO 90
367
           Y(IY)=1.41421*SY*SQRT(ARG)
           IF (X.NE.XCH) AR(IY)=AR(IY)+Y(IY)*DXA
368
           IF (X.EQ.XCH) AR(IY)=AR(IY)-Y(IY)*(XS+DX-XCH)
369
370
      89
           CONTINUE
371
           IY-ND+1
372
      90
           IY=IY-1
373
           WRITE(*,91) X,DP,(Y(I),I=1,IY)
374
      91
           FORMAT (1X, F10.0, 1PE10.3, 0P10F5.0)
375
      92
376
           DPLS-DPL
377
           DLDGS-DLDG
378
           IF (X.NE.XCH) GO TO 93
379
           IMTCH=1
380
           SXS=SX
```

```
381
           SYS-SY
382
           SZS-SZ
383
           RETURN
384
           IF (X.EQ.1..AND.DX.GT.1.) X=0.
385
           X-X+DX
386
           K=K+1
           IF (X.GT.9.E6) RETURN
387
388
           IF (IND.EQ.O.OR.DP.GT.D(MRL+1) OR.IRTP.Lf.1) GO TO 25
389
           1F (DPMX.LT.D(MRL+1)) WRITE(*,104) XDMX,DPMX
390
      94
           WRITE (*.*)
           IF (IPO.EQ.3) WRITE (*,96)
391
           FORMAT (4X, 'DOSAGE',5X, 'AREA')
392
      96
393
           IF (IPO.EQ.3) WRITE(^{*},99) (D(I),AR(I),I=ND,1,-1)
394
           IF (IVD.EQ.1.AND.IPO.EQ.4) CALL VDPL(QTTL,SY,SZ,D(1),X,DX,DXA,XS,
395
          1XCH, DP, DPA, SDEPL, 4)
           IF (K.GT.51) RETURN
396
397
           DO 97 1=K.51
398
      97
           DS(I,1)=0.
399
           RETURN
      98
400
           FORMAT (1X, F10.0, 1P5E10.3)
           FORMAT (1X, 1P2E10.3)
401
      99
      100 FORMAT (15x, 'SUM')
402
           FORMAT (/1X,F10.0, ' (M) IS DISTANCE TO ',E10.3, ' (MG-MIN/M^3)')
403
      101
           FORMAT (/1X,F10.0, '(M) IS DISTANCE TO ',A12/)
404
      102
           FORMAT (/' W/2-MINUTE CORRECTION')
405
      103
406
      104 FORMAT (/' MINIMUM DOSAGE NOT ATTAINED', //4X, 'XDMAX', 9X, 'DMAX',
407
                  /F10.0,6X,E10.3
408
      105 FORMAT (/' DOSAGE IS BEING SUMMED')
409
           END
```

AND THE PROPERTY INCOME.

HD42.FOR

```
C FIT TO ORG 40 PAR FOR 4.2/ CGW
          SUBROUTINE HD42
 3
          COMMON NQI,QT(6),TWL(6),D(10),DL(10)
          COMMON TIM, DXT, HT, HML, SXS, SYS, SZS, TIVCH, UT, BR, SF, TMP, ALFA, SY100,
         1BETA.SZ100.Z.RC.V.QS
          COMMON HDM (33), IPR (1), ND, IPO, I2MC, IMA, OPC, IMM, IDD, IHS, NOV, INP, MRL,
 7
         1NMU, ID2, IDEP, IMTCH, IM, IR, IL, IRL, ISM, IVA
8
          DIMENSION FWT (10), FST (3), ALBT4 (3), SZR4 (3)
9
          DATA FWT/1.6,.89,.64,.52,.43,.37,.33,.3,.27,.25/
10
          DATA FST/.7,1..1.25/
11
          DATA SYR4/6.82/
12
          DATA ALBT4/3.33,1.4,1.02/
13
          DATA SZR4/287.,12.84,6.97/
14
          TF=1.8*TMP+32.
15
          IF (TF.LT.50.) GO TO 4
16
          IUT=UT+.5
17
          IF (IUT.GT.10) IUT=10
18
          IMT=(IM+1)/2
          IF (TF.LE.80.) FT=EXP(3.6889-.046052*TF)
19
20
          IF (TF.GT.80.) FT=EXP(3.4239-.042799*TF)
21
          22. TIME AFTER FUNCTIONING
22
          CALL READA (22, IRT, 3, TIM)
23
          IF (IRT.LT.0) GO TO 1
24
          FEL=ALOG(FST(IMT)*FWT(IUT)*FT*120./TIM)
25
          R-1.
26
          IF (FEL.LT.-1.2) GO TO 3
27
          R=EXP(.36464-.86189*FEL)
28
          IF (FEL.GT..4) R=R-EXP(-.05129-1.6767*FEL)
29
          IF (FEL.LE..4) R=R-EXP(-.24846-1.1373*FEL)
30
     3
          QT(1)=QS*R*NMU
31
          SY100-SYR4
32
          S2100=SZR4(IMT)
33
          ALFA=ALBT4(IMT)
34
          BETA=ALBT4 (IMT)
35
          SYS=3.8
36
          SZS=.2
37
          SXS=SYS
38
          RETURN
39
          WRITE(*,5)
          FORMAT(' TEMPERATURE FUNCTION NOT DEFINED BELOW 10 DEG C')
40
41
          QT(1)=0.
42
          RETURN
43
          END
```

FTC3.FOR

```
PEAK CONCENTRATION/ INS/ CON/ FUM/ SAO PER CGW-JHG
          SUBROUTINE CDS
2
          CHARACTER*1 IST
3
          COMMON NQI,QT(6),TWL(6),CI(10),CL(10)
          COMMON PR (1), DXT, H, HML, SXS, SYS, SZS, TIVCH, UT, BR, SF, TMP, ALF, SYR, BTA,
         1SZR,Z,RC,V,QS,TEVP,SA,FL,FMW,CDM(8),FP,CDM1(8),Z0,CDM2(11)
          COMMON IPR(1), ND, IPO, I2MC, IMA, IPC, IMM, IDD,
7
         11HR, NOV, INP, MRL, ID1, ID2, IDEP, IMTCH, IH, IR, IL, IRL, ISM, IVD, K33, K42
8
          DIMENSION ALFA(6), BETA(6), SY100(6,2), SZ100(6)
9
          DIMENSION SY100C(2,3), SZ20C(2,3), BETAC(2,3)
10
          DIMENSION IST(11), Y(10), AR(10)
11
          DATA ALFA/1.0,1.0,1.0,.9,.8,.7/
12
          DATA BETA/1.4,1.,.9,.85,.8,.75/
13
          DATA SY100/9.,6.33,4.8,4.,3.,2.,27.,19.,12.5,8.,6.,4./
14
          DATA $2100/14.,11.,7.5,4.5,3.5,2.5/
15
          DATA SY100C/41.19,31.18,66.56,30.98,26.17,29.33/
16
          DATA SZ20C/3.,1.652,.797,1.934,.705,1.242/
17
          DATA BETAC/1.344,.755,1.218,.949,1.182,1./
18
          DATA IST/'A', 'B', 'C', 'D', 'E', 'F', 'N', 'I', 'U', 'S', 'W'/
19
          DATA HK/0./
20
21
           IF (IDEP.EQ.0) GO TO 42
22
          WRITE(*,1)
           FORMAT ('CONCENTRATION NOT DEFINED FOR INSTANTEOUS'
23
          S' RELEASE OF VX OR HD')
24
25
          RETURN
26
           IF (IMTCH) 2,2,43
     42
27
           DO 3 I=1,ND
     2
28
           AR(I)=0.
           CL(I) = LOG(CI(I))
29
30
     3
           CONTINUE
31
           X=0.
           DX-DXT
32
           SDEPL=1.
33
34
           Q=QT(1)
35
           IS-1
36
           IF (TWL(1).GT..083) IS=2
37
     43
           IMTCH=0
38
           IF (IM.GT.8) GO TO 5
39
           IF (IM.GT.6) GO TO 4
40
           ALF=ALFA(IM)
           SYR-SY100(IM.IS)
41
42
           BTA=BETA(IM)
43
           SZR=5Z100(IM)
           GO TO 5
44
45
           I=UT/2.235+1
           IF (1.GT.3) I=3
46
47
           MC=IM-6
48
           BTA-BETAC (MC, I)
49
           ALF=.5
50
           SYR=SY100C(MC, I)
```

COCCUPIED AND CO

```
51
            SZR=SZ2OC (MC.I) *5**BTA
 52
      5
            XC=1.E36
 53
            IF (TWL(1).EQ.1.E36) GO TO 6
 54
            Q=QT(1)/TWL(1)
 55
            XC=O.
            IF (IS.EQ.1) GO TO 6
 56
 57
            XC=EXP (ALOG (TWL (1) *UT*157.27) /.9294)
 58
            00U=0/UT
 59
            HKOU-HK/UT/60.
 60
            XCH-1.E36
            IF (TIVCH.NE.1.E36) XCH-UT*TIVCH*60.+X
 61
 62
            IF (IMTCH.EQ.1) GO TO 44
 63
            MXLF=0
 64
            TWHML=HML+HML
 65
            IC-ND
            IND-0
 66
 67
            IRTP=1
 68
            IF (IR.GT.4.AND.IR.LT.8) IRTP=0
 69
            CPMX=0.
 70
            CPLSAV=-87.5
 71
            XSAVE=0.
 72
            A=0.
 73
            B-0.
 74
            C=0.
 75
            IF (SXS.NE.O.) A=(SXS/.1522)**1.076-X
 76
            IF (SYS.NE.O.) B=100*(SYS/SYR)**(1./ALF)-X
 77
            IF ($Z$.NE.O.) C=100.*($Z$/$ZR)**(1./BTA)~X
 78
            WRITE(*,7)
 79
            FORMAT (/5x, 'Q (MG)', 4x, 'TS (MIN)', 3x, 'HTS (M)', 4x, 'HML (M)',
      7
           +6X, 'WND')
 80
 81
           WRITE (*,8) QT(1),TWL(1),H,HML,UT,IST(IM)
 82
            FORMAT (3X, 1PE9.3, 4(1X, F9.3), 4X, A2)
 83
           WRITE (*.9)
            FORMAT (/4x, 'ALF', 2x, 'SYR', 4x, 'BTA', 3x, 'SZR', 8x, 'SYS(M)',
 84
 85
           +2X, 'SZS(M)',2X, 'XY(M)',3X, 'XZ(M)',3X, 'XC(M)')
 86
           WRITE (*,10) ALF, SYR, BTA, SZR, SYS, SZS, B, C, XC
 87
            FORMAT (1X, 4F6.2, 6X, 1P5E8.1/)
 88
            IF (IVD.EQ.1) CALL VDPL(Q,SY,SZ,CI(1),X,DX,DXA,XS,XCH,CP,CP,
 89
           1SDEPL.1)
 90
            IF (IMA.EQ.3) WRITE (*,11)
 91
      11
            FORMAT (' FUMIGATION')
 92
            IF (IPO.NE.3) GO TO 13
           WRITE(*,12) (CI(I), I=1,ND)
 93
 94
      12
           FORMAT ('
                            CONCENTRATIONS', 10F5.0)
 95
           WRITE (*, *)
           WRITE (*,*) '
 96
                                         CP
                                               CONTOUR HALF-WIDTHS'
 97
      13
            IF (IPO.LT.3) WRITE(*,41)
            IF (IMA.EQ.2) WRITE(*,*)'
 98
                                                          PPM'
 99
      14
           IF (X.GT.XCH) X=XCH
           DXA-DX
100
101
           IF (X.GE, (DX*10.)) DX=DX*10.
102
           DXA-DXA+DX
103
           IF (X.EQ.0) X=1
104
           SY=SYR*((X+B)*,O1)**ALF
1C5
           SZ=SZR*((X+C)*.01)**BTA
```

```
106
            IF (IVD.EQ.1.AND.X.EQ.1.) CALL VDPL(Q.SY.SZ.CI(1).X.DX.DXA.XS.
107
           1XCH, CP, CP, SDEPL, 2)
108
            IF (IRTP.GT.0) GO TO 15
109
            CALL PLRS (UT, TMP, PMH, IL, IM, IR, X, H, HML, IPC, IRTP)
110
            IF (IMA.NE.3) GO TO 16
111
            SYF-SY+ (H*. 125)
112
            CP=00U/(150.39770*SYF*(H+S2+S2))
113
            GO TO 24
114
      16
            IF (MXLF) 18,18,17
115
      17
           CP=00U/(150.39770*8Y*HML)
116
            GO TO 22
117
      18
            CP=QOU/(188.49556*SZ*SY)
118
           TSZSQ-SZ*SZ*2.
119
           HP2-H+Z
120
           HMZ-H-Z
121
           VT=V*X/UT
122
           FAC=0.
123
           HML2-1.E36
           ARG= (HMZ-VT) **2/TSZSQ
124
125
            IF (ARG.LT.87.) FAC=FAC+EXP(-ARG)
126
           ARG= (HPZ-VT) **2/TSZSQ
127
            IF (ARG.LT.87.) FAC=FAC+RC/EXP(ARG)
128
           ZFAC-0.
129
           IF (HML.GT.1.E10.OR.MXLF.EQ.1) GO TO 21
130
           DO 19 JJ=1.20
131
           SMHML=TWHML*JJ
132
           ARG= (SMHML-HPZ+VT) **2/TSZSQ
133
           IF (ARG.GT.87.) GO TO 20
134
           ZFAC=ZFAC+RC**(JJ-1)/EXP(ARG)
135
           ARG= (SMHML-HMZ+VT) **2/TSZSQ
136
           IF (ARG.LT.87.) ZFAC=ZFAC+RC**JJ/EXP(ARG)
137
           ARG= (SMHML+HMZ-VT) **2/TSZSQ
138
           IF (ARG.LT.87.) ZFAC=ZFAC+RC**JJ/EXP(ARG)
139
           ARG= (SMHML+HPZ-VT) **2/TSZSQ
140
           IF (ARG.LT.87.) ZFAC=ZFAC+RC**(JJ+1)/EXP(ARG)
      19
141
           IF((FAC+ZFAC).NE.O.) HML2=(2.5066283*SZ)/(FAC+ZFAC)
142
           IF (HML.GT.HML2.AND.(HML-HML2).LT.1) MXLF=1
143
      21
           RF=(FAC+ZFAC)/2.
144
           CP=CP*RF
145
      22
           IF (X.LT.XC) GO TO 23
146
           SX=.1522*((X+A)**.9294)
147
           CF=CP*TWL(1)*UT*23.936537/SX
148
      23
           IF (HK.GT.O.) CP=CP/EXP(X*HKOU)
149
           IF (CP.LT.1.E-35) GO TO 36
150
           IF (IVD.EQ.1) CALL VDPL(Q.SY,SZ,CI(1),X,DX,DXA,XS,
151
           1XCH, CP, CP, SDEPL, 3)
152
           IF (IMA.EQ.2) CP=CP*24.45/FMW
153
           CPL=LOG(CP)
154
           IF (XSAVE.EQ.O..OR.CPL.GE.CPLSAV) GO TO 28
155
           IND-1
156
           IF (CPMX.LT.CI(IC)) GO TO 26
157
           IF (CP.GT.CI(IC).OR.CPLSAV.LT.CL(IC)) GO TO 29
158
           XLNA=ALOG(X)
159
           XLNB=ALOG(XSAVE)
160
           XLNC=XLNB+(XLNA-XLNB)*(CL(IC)-CPLSAV)/(CPL-CPLSAV)
```

```
161
           XINT-EXP(XLNC)
162
           IF (IVD.EQ.1) WRITE(*,'(F5.2)') SDEPL
163
           WRITE (*,27) XINT,CI(1C)
164
      26
           IC=IC-1
165
           IF (IC-MRL) 29,29,25
166
      27
           FORMAT (/1x,F10.0,'* ',1PE10.3)
167
      28
           IND=0
168
           IC-ND
169
           IF (CP.LT.CPMX) GO TO 29
170
           CPMX=CP
171
           XCMX-X
      29
172
           IF (IPO.NE.3) GO TO 32
173
           SYRT2-1.41421*SY
174
           Y(1) = 0.
175
           DO 30 IY-1,ND
176
           ARG-CPL-CL(IY)
177
           IF (ARG.LT.O.) GO TO 31
178
           Y(IY)=SYRT2*SQRT(ARG)
179
           IF (X.NE.XCH) AR (IY) = AR (IY) + Y (IY) *DXA
           IF (X.EQ.XCH) AR (IY)=AR(IY)-Y(IY)*(XSAVE+DX-XCH)
180
181
      30
           CONTINUE
182
           IY=ND+1
183
      31
           IY-IY-1
           WRITE (*,39) X,CP,(Y(I),I=1,IY)
184
185
           GO TO 35
186
      32
           IF (IPO.EQ.O.OR.IPO.EQ.4) GO TO 35
187
           IF (RF.EQ.1.0.OR.MXLF.EQ.1) GO TO 34
188
           WRITE (*,33) X,CP,RF
189
      33
           FORMAT (1x, F10.0, 2x, 1P2E10.3)
190
           GO TO 35
191
      34
           WRITE (*.33) X.CP
192
      35
           IF (IND.EQ.1.AND.CPL.LT.CL(1+MRL).AND.IRTP.GT.O) GO TO 37
193
           XSAVE~X
194
           CPLSAV=CPL
195
           IF (X.NE.XCH) GO TO 36
196
           IMTCH=1
197
           SXS-SX
198
           SYS-SY
199
           SZS=SZ
200
           RETURN
201
           IF (X.EQ.1..AND.DX.GT.1.) X=0.
202
           X=X+DX
203
           GO TO 14
           IF (CPMX.LT.CI(1+MRL)) WRITE(*,39) XCMX,CPMX
204
      37
205
           IF (IPO.EQ.3) WRITE (*,40) (CI(I),AR(I),I=ND,1,-1)
206
           IF (IVD.EQ.1.AND.IPO.EQ.4) CALL VDPL(Q.SY.SZ.CI(1),X.DX.DXA.XS.
207
          1XCH, CP, CP, SDEPL, 4)
208
           RETURN
209
      38
           FORMAT (21X, 10F5.0)
           FORMAT (1X,F10.0,1PE10.3,0P10F5.0)
210
      39
           FORMAT (//5X, 'C', 8X, 'AREA', /(1P2E10.3))
211
      40
212
      41
           FORMAT (/9x, 'x', 8x, 'CP', 8x, 'RF')
213
           END
```

PLR3.FOR

```
STACK PROGRAM/ PLUME RISE/ GROUND FIRE/ CGW
 2
          SUBROUTINE PLRS (UR, TMP, PMH, 1L, IM, IR, XI, HT, HML, IPC, IRTP)
          COMMON PDM (60), HS, DS, TSC, VS, RDE, P, HR, CR, PD2 (42)
 3
          DIMENSION DELF (6), DTDZ (6), PT (6,3), ITT (12)
          DATA DXT /10./
          DATA G /9.8/
 7
          DATA ZR /2./
          DATA CP /.24/
9
          DATA GI /.64/
10
          DATA GC /.5/
          DATA DELF/1.2,1.1,1.,1.,.9,.8/
11
12
          DATA DTDZ/-.01,-.008,-.006,0.,.01,.037/
13
          DATA PT/.05,.05,.1,.1,.15,.15,.05,.1,.15,.2,.25,.3,.1,.15,.2,.25,
14
         1.3,.35/
15
          DATA ITT/3,2.3,1,3,2,3,2,2,3,3,0/
16
          IF (XI.EQ.O.) GO TO 30
17
          IF (IPC.GT.1) GO TO 10
18
          IRTP-1
19
          RETURN
20
      10 X=XI
21
          IF (XI.LT.XMX) GO TO 20
22
          X=XMX
23
          IRTP=IRTP+1
          IF (IR-6) 280,290,320
24
      20
25
      30 IRTP=-1
26
          TA-TMP+273.
27
          S-G*DTDZ (IM) /TA
28
          IF (IL.NE.12) GO TO 60
29
          16. ATMOSPHERIC PRESSURE
30
          CALL READA (16, IRT, IA, PMM)
          IF (IRT.LT.0) GO TO 40
31
32
      60
          PA=1013.*PMM/760.
33
          23. OUTPUT CONTROL CODE
34
      50 CALL DEF (23, IRT)
          IF (IRT.EQ.O) READ(*,*,ERR=70) IPC
35
36
          GO TO 80
37
      70 CALL DEF (63, IRT)
38
          GO TO 50
39
      80
          IF (IR.GT.6) GO TO 300
40
    C
          24. HEIGHT OF STACK
      90
41
         CALL READA (24, IRT, IA, HS)
42
          IF (IRT.LT.0) GO TO 90
43
    C
          25. DIAMETER OF STACK
     100 CALL READA (25, IRT, IA, DS)
44
45
          IF (IRT.LT.0) GO TO 100
46
          26. TEMPERATURE OF STACK
     110 CALL READA (26, IRT, IA, TSC)
47
48
          IF (IRT.LT.0) GO TO 110
49
          27. VELOCITY OF EFFLUENT
```

50

120 CALL READA (27, IRT, IA, VS)

```
51
           IF (IRT.LT.0) GO TO 120
 52
           28. RELATIVE DENSITY OF EFFLUENT
 53
      130
           CALL DEF (28, IRT)
 54
           IF (IRT.EQ.O) READ(*,*) RDE
 55
      140
           TS-TSC+273.
 56
           F-0.
 57
           IF (TS.LT.TA) WRITE(*,150)
      150
 58
          FORMAT(' DHH/DHB/DHBT NOTE: STK TMP LESS THAN AIR TMP')
 59
           IF (TS.LT.TA) GO TO 160
           F=(TS-TA)/TS*G*VS*DS**2/4.
 60
           IF (F.LE.55.) XA=14.*F**.625
 61
 62
           IF (F.GT.55,) XA=34.*F**.4
 63
           XMX=3.5*XA
 64
      160
           IT=ITT(IL)
 65
           IF (IT.NE.O) P=PT(IM.IT)
 66
           IF (IT.NE.O) GO TO 170
 67
           29. FROST PROFILE EXPONENT
 68
           CALL DEF (29, IRT)
           IF (IRT.EQ.0) READ(*,*) P
 69
           UZ=UR*(HS/ZR)**P
 70
 71
           IF (S.GT.O.) XMX=2.4*UZ/S**.5
 72
           FM=RDE*VS*VS*DS*DS/4.
 73
           IF (UZ.LT.1..AND.S.GE.O.) GO TO 200
 74
           VR=VS/UZ
 75
           IF (VR.LT.4) WRITE(*,180)
 76
           FORMAT (' DHJ NOTE: V$/UZ LT 4')
      180
 77
           IF (S.LT.O.) WRITE (*,190)
 78
      190
           FORMAT (' DHJ NOTE: UNSTABLE MET CONDITIONS')
           DHJ=3.*VR*DS
 79
80
           GO TO 210
           DHJ=4.*(FM/S)**.25
 81
      200
 82
      210
           IF (S.LE.O.) GO TO 220
83
           DHJB=1.5*(FM/UZ)**.333/S**.167
 84
           IF (DHJB.LT.DHJ) DHJ=DHJB
 85
      220
           X=1.
 86
           IF (IR.EQ.5.AND.IPC.EQ.0) X=XMX
 87
           DELH= (VS*DS/UR) * (1.5+(2.68E-3*PA*((TS-TA)/TS)*DS))
           DHH=DELH"DELF (IM)
88
89
           WRITE (*, 230)
90
      230 FORMAT (/8x,'x',8x,'DHH',7x,'DHB',6x,'DHBT',5x,'DHJ')
91
           DEL=1.6*(F**.333)/UZ
92
      240
           IF (IR.EQ.5, AND. X.GT.XMX) X=XMX
93
           DHB=DEL*X**.667
94
           IF (S.LE.O.) GO TO 250
95
           DHB=2.5*(F/(UZ*S))**.333
96
           IF (UR.GE.1.) GO TO 250
97
           DHMTT=5.*(F^{**}.25)/(S^{**}.375)
98
           IF (DHMTT.LT.DHB) DHB=DHMTT
99
      250
           DHJX=1.44*DS*(VS/UZ)**.667*(X/DS)**.333
100
           IF (DHJX.GT.DHJ) DHJX=DHJ
101
           DHBT=F**.333*X**.647/UZ*(1.065-6.25*DTDZ(IM))
102
           IF (IPC.EQ.1.UR.IPC.EQ.3) WRITE (*, 260) X, DHH, DHB, DHBT, DHJX
103
           IF (IR.EQ.5.AND.X.GE.XMX) GO TO 270
104
           IF (IR.EQ.6.AND.DHJX.GE.DHJ) GO TO 270
105
      260 FORMAT (6F10.2)
```

```
106
           IF (X.EQ.1.) X=0.
107
           X=X+DXT
108
           GO TO 240
      270 WRITE(*,260) X, DHH, DHB, DHBT, DHJ, P
109
110
           IF (IR.EQ.5) HT-HS+DHBT
           IF (IR.EQ.6) XMX=X
111
           IF (IR.EQ.6) HT-HS+DHJ
112
113
           RETURN
      280 DHBT=F**.333*X**.667/UZ*(1.065-6.25*DTDZ(IM))
114
115
           HT-HS+DHBT
116
           GO TO 360
      290 DHJX=1.44*DS*(VS/UZ)**.667*(X/DS)**.333
117
118
           IF (DHJX.GT.DHJ) DHJX-DHJ
119
           HT-HS+DHJX
120
           GO TO 360
121
           30. HEAT RELEASED
122
      300
           CALL READA (30, IRT, IA, HR)
123
           IF (IRT.LT.0) GO TO 300
124
           31. CLOUD RADIUS
125
      305 CALL READA (31, IRT, IA, CR)
126
           IF (IRT.LT.0) GO TO 305
127
           HT-O.
128
           IF (IM.LT.4) GO TO 330
129
           IF (IM.EQ.4) S=G*3.322E-4/TA
130
           ROA=352320.*PMM/760./TA
131
           RTS-S**.5
132
           XMX=3.14159*UR/RTS
133
           X=XMX
           WRITE(*,310) XMX
134
      310 FORMAT (' XMX=',F7.0)
135
136
      320 FT=1.-COS(RTS*X/UR)
137
           FB=G*HR/(3.14159*ROA*CP*TA)
138
           IF (IR.EQ.8) GO TO 350
139
           HT=(3.*FB*FT/(S*GI**3)+(CR/GI)**4)**.25-(CR/GI)
140
           GO TO 360
141
      330 WRITE (*, 340)
142
      340 FORMAT (' HEIGHT DEFINED FOR STABLE CONDITIONS ONLY')
143
           RETURN
144
     350 HT-(3.*FB*FT/(UR*GC*GC*S)+(CR/GC)**3)**.333-(CR/GC)
145
     360 IF (HT.LT.HML) GO TO 370
146
           HT=HML
147
      370 WRITE(*,380) HT
148
      380 FORMAT(' HTS=',F7.2)
149
           RETURN
```

22.02.22

The second of th

150

END

PSST3.FOR

```
PASOUILL STABILITY CATEGORY SELECTOR/ TURNER/CGW
2
          SUBROUTINE STAB (U, IS, IL, IM, ID)
3
          COMMON SDM (68), SLA. SLO. CC. CH. AE, SD2 (21), IHR, SD3 (15)
          CHARACTER*1 ISTA MTC
5
          CHARACTER*20 ADH
6
          CHARACTER*3 INO, IMOT
7
          DIMENSION AC(4), IST(7,8), ISTA(6), IDC(12), SE(4)
8
          DIMENSION IMOT(12), SLAT(10), SLOT(10)
9
          DATA AC/15.,35.,60.,90./
          DATA ISTA/'A', 'B', 'C', 'D', 'E', 'F'/
10
11
          DATA IST/6,6,4,3,2,1,1,6,6,4,3,2,2,1,6,5,4,4,3,2,1,6,5,4,4,3,2,2,
12
         13
          DATA IDC/0,0,3,3,4,4,5,5,5,6,6,7/
          DATA IMOT /'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG',
14
                       'SEP', 'OCT', 'NOV', 'DEC'/
15
16
          DATA VE, YRL /0.,0./
17
          DATA SE /92.78,93.64,89.83,89./
18
          DATA HY /182.62/
          DATA PH /1.570796/
19
          DATA PI /3.141593/
20
21
          DATA P2 /6.283185/
22
          DATA RD /57.2958/
23
          DATA SLAT/33.7,40.,39.3,16.7,38.,40.,34.,38.,40.,46./
24
          DATA SLOT/86.1,113.,76.,169.5,84.,87.5,92.,2*105.,120./
25
          IF (VE.GT.O.) GO TO 1
          WRITE(*,*) ' INPUT: YEAR(1986)'
26
27
          READ (*.*) YR
28
          DY04= (YR-1976.) /4.
29
          VE=79.4931+(DYO4*.9688)-AINT(DYO4)
30
          IF ((DYO4-AINT(DYO4)).EO.O.) YRL=1.
31
          IF (IL.LT.11) GO TO 30
     1
    C
          32. STATION LATITUDE AND LONGITUDE
32
33
     10
          CALL DEF(32, IRT)
34
          IF (IRT.EQ.0) READ(*,*) SLA, SLO
35
          GO TO 40
36
      30 SLA-SLAT(IL)
37
          SLO-SLOT(IL)
38
      40
          A-SLA/RD
39
   C
          33. MONTIL, DAY, HOUR (JAN, 01, 1200)
40
          CALL DEF(33, IRT)
41
          IF (IRT.EQ.1) GO TO 80
          READ(*, '(A3, 1X, BN, A20)') IMO, ADH
42
43
          READ(ADH, '(BN, 12, 1X, 14)') ID, IHR
44
      60 DO 70 IM=1.12
45
          IF(IMO.EQ.IMOT(IM)) GO TO 80
      70 CONTINUE
46
47
          GO TO 40
48
   C
          34. CLOUD COVER (1/10), CLOUD HEIGHT (FT)
49
      80 CALL DEF (34, IRT)
50
          IF (IRT.EQ.0) READ(*,*) CC,CH
```

```
HRC=IHR/100.
51
          HRS=(HRC-INT(HRC))/0.6+INT(HRC)
52
53
          IF (IM.NE.O) GO TO 100
54 C
          35. SUN ELEVATION ANGLE
55
          CALL DEF(35.RT)
          IF (IRT.EQ.O) READ(*,*) AE
56
          GO TO 130
57
     100 L_=(IM-1)*31-IDC(IM)+ID
58
          IF (IM.GT.2) DJ=DJ+YRL
59
60
          DV=DJ-VE
          IF (DV.LT.O.) DV-DV+365.
61
          DT-DV
62
63
          DO 110 I=1,4
           IF (DT.LT.SE(I)) GO TO 120
64
65
          DT=DT-SE(I)
     110 CONTINUE
66
     120 DL=SIN(PH*((I-1)+DT/$E(I)))*.4091
67
           EQ=(10.*SIN((DV+89.)/HY*P2)+7.75*SIN((DV+78)/HY*PI))/60.
68
           HDL=ACOS (-.014538/COS (A) /COS (DL) ~ (TAN (A) *TAN (DL))) /.2618
69
           TC=12.+EQ+(SLO/15.-AINT(SLO/15.))
70
           ISR=(((TC-HDL)-AINT(TC-HDL))*.6+AINT(TC-HDL))*100.
71
           ISS=(((TC+HDL)-AINT(TC+HDL))*.6+AINT(TC+HDL))*100.
72
           AE-ASIN (SIN (A) *SIN (DL) +COS (A) *COS (DL) *COS ((HRS-TC) * . 2618)) *RD
73
     130
74
         I=0
           IF (CC.EQ.10.AND.CH.LT.7000.) GO TO 190
75
           IF (HRS.GT. (13.-HDL).AND.HRS.LT. (11.+HDL)) GO TO 140
76
77
           1=-2
           IF (CC.GT.4.) I=-1
78
           GO TO 190
79
80
     140 DO 150 I=1.4
           IF (AE.LT.AC(1)) GO TO 160
81
     150 CONTINUE
82
           I=4
83
          IF (CC.LT.6.OR.CH.GT.16000.) GO TO 190
     160
84
           IF (CC.GT.9.OR.CH.GE.7000.) GO TO 170
85
           I=1-2
86
87
           GO TO 180
     170
          I = I - 1
88
           IF (I.LT.1) I=1
89
     180
90
     190 I=I+3
91
           J=U+1.
92
           IF (U.GT.6.) J=8
93
           IS=IST(I,J)
94
           MTC=ISTA(IS)
           WRITE(*, 200) ISR, ISS, AE, MTC
95
     200 FORMAT(' SR', 14, 3X, ' SS', 15, 3X, ' AE', F6.2, 3X, ' STAB ', Al)
96
97
           RETURN
98
           END
```

WOODS.FOR

```
SUBROUTINE WOODS (U. ALFA, SY100, BETA, SZ100, WT)
          DIMENSION UT (4), W(4,5), ALW (4,5), SYW (4,5), BTW (5), SZW (4,5), WTT (5)
          CHARACTER*2 WTT, WT
          DATA UT/.45,2.2,5.4,8.9/
          DATA W/.089,.45,1.1,1.8,.089,.36,.8,1.3,.089,.36,.8,1.3,
         $ .045,.22,.54,.89,.045,.13,.27,.45/
          DATA ALW/.8,1.,1.,1.1,.8,3*1.,.8,3*1.,.8,7*1./
          DATA SYW/12.8,12.1,12.,12.,18.2,17.5,16.8,14.5,
 9
         $ 23.5,22.5,19.,14.,29.,26.5,22.5,16.5,53.,36.,26.,23./
10
          DATA SZW/8.97,9.66,2*10.35,12.96,3*13.78,14.59,
11
         $ 3*15.4,4*20.,4*34.5/
12
          DATA BTW/1.2,1.3,1.3,1.4,1./
13
          DATA WIT/'DW', 'MW', 'CF', 'MS', 'RF'/
14
    C
          36. WOODS TYPE
15
       10 CALL DEF(36, IRT)
16
          IF (IRT.EQ.0) READ(*,30) WT
17
       30 FORMAT (A2)
18
          DO 40 1-1.5
19
          IF (WTT(I).EQ.WT) GO TO 60
20
       40 CONTINUE
21
          WRITE (*,50)
22
       50 FORMAT(' WOODS CODE NOT DEFINED')
23
          CALL DEF (76. IRT)
24
          GO TO 10
25
       60 IF (U.GT.O.) GO TO 90
26
          U=ABS(U)
27
          DO 70 J=1.4
28
          IF (W(J,I) .GE. U) GO TO 130
29
       70 CONTINUE
30
       80 ALFA-ALW(4,I)
31
          SY100=SYW(4,I)
32
          SZ100-SZW(4.I)
33
          GO TO 140
34
       90 DO 100 J=1.4
35
          IF (UI(J),GE.U) GO TO 110
      100 CONTINUE
36
37
          J-4
38
      110 IF (J.NE.1) GO TO 120
39
          U=W(J,I)
40
          GO TO 130
41
      120 S=ALOG(W(J,I)/W(J-1,I))/ALOG(UT(J)/UT(J-1))
42
          U=W(J-1, I)*(U/UT(J-1))**S
43
          IF (U.GT.W(4,I)) GO TO 80
44
      130 DUW=(U-W(J-1,I))/(W(J,I)-W(J-1,I))
45
          ALFA=ALW(J-1,1)+DUW'(ALW(J,I)-ALW(J-1,I))
46
          SY100=SYW(J-1,I)+DUW*(SYW(J,I)-SYW(J-1,I))
47
          SZ100=SZW(J-1,I)+DUW*(SZW(J,I)-SZW(J-1,I))
48
      140 BETA-BTW(I)
49
          RETURN
50
          END
```

DEF. FOR

```
SUBROUTINE DEF(IQ, IRT)
 2
          COMMON DDM (95), NOV, DD1 (7), IR, DD2 (6)
 3
          DIMENSION IQT (40), IQI (7)
          DATA IQ1/2,3,5,6,8,9,10/
           IF (IQ) 10,20,50
       10 IQQ=(-IQ)
 7
           IQT (IQQ) =0
 8
          RETURN
 9
       20 DO 40 I=1.40
10
       30 IQT(I)=0
       40 CONTINUE
11
12
          RETURN
13
       50 IF (IQ.EQ.80) GO TO 140
14
           IF (IQ.GT.40) GO TO 110
15
           IF (IQ.EQ.40) GO TO 120
           IF (IQ.EQ.39) GO TO 130
16
17
           IF (IQT(IQ),EQ.0) GO TO 60
18
           IRT=1
19
          CALL QLIST (IQ, IRT)
20
          RETURN
21
      60
          IRT=0
           IF(IQ.NE.12.AND.IR.NE.2) WRITE(*,*)
22
23
          CALL QLIST (IQ, IRT)
24
           IQT(IQ)=1
25
           IF (NOV-1) 70,90,100
26
       70 WRITE(*,80)
27
       80 FORMAT('
                     INPUT: '\)
28
          RETURN
29
       90 IF (IQ.EQ.2) WRITE(*,1001)
           IF (IQ.EQ.3) WRITE (*, 1007)
30
31
           IF (IQ.EQ.5) WRITE(*,1003)
           IF (IQ.EQ.6) WRITE (*, 1004)
32
           IF (IQ.EQ.8) WRITE(*,1005)
33
34
           IF (IQ.EQ.9) WRITE(*,1006)
35
           IF (IQ.EQ.17) WRITE(*,1012)
          IF (IQ.EQ.36) WRITE (*,1024)
36
37
          GO TO 70
38
     100 IF (IQ.EQ.1) WRITE(*,2000)
39
          IF (IQ.EQ.2) WRITE (*, 2005)
          IF (IQ.EQ.3) WRITE (*, 2010)
40
          IF (IQ.EQ.5) WRITE (*, 2020)
41
42
          IF (IQ.EQ.6) WRITE(*,2030)
43
          IF (IQ.EQ.8) WRITE(*,2040)
44
          IF (IQ.EQ.9) WRITE (*, 2050)
45
          IF (IQ.EQ.13.AND.IR.NE.3) WRITE (*, 2060)
          IF (IQ.EQ.13) WRITE (*, 2070)
46
47
          IF (IQ.EQ.17) WRITE(*,2080)
          IF (IQ.EQ.21) WRITE(*,2090)
48
49
          IF (IQ.EQ.23) WRITE(*,2095)
50
           IF (IQ.EQ.36) WRITE(*,2110)
```

```
51
           GO TO 70
52
       110 100-10-40
53
           IQT(IQQ)=0
54
           IF (NOV.GT.1) RETURN
55
       115 IF (IQQ.EQ.1) WRITE(*,2000)
56
           IF (IQQ.EQ.2) WRITE(*,2005)
57
           IF (IQQ.EQ.3) WRITE(*,2010)
58
           IF (IQQ.EQ.5) WRITE(*,2020)
59
           IF (IQQ.EQ.6) WRITE(*,2030)
60
           1F (IQQ.EQ.8) WRITE(*,2040)
           IF (IQQ.EQ.9) WRITE(*,2050)
61
62
           IF (IQQ.EQ.17) WRITE(*,2080)
63
           IF (IQQ.EQ.21) WRITE(*,2090)
64
           IF (IQQ.EQ.23) WRITE(*,2095)
65
           IF (IQQ.EQ.36) WRITE(*,2110)
66
           RETURN
67
       120 IQQ-IRT
68
           IF (IQQ.GT.0) GO TO 115
69
           IF (IRT.EQ.-1) WRITE(*,601)
70
           IF (IRT.EQ.-2) WRITE(*,602)
71
           IF (IRT.EQ.-3) WRITE(*,603)
72
           IF (IRT.EQ.-4) THEN
73
           WRITE(*,604)
74
           PAUSE
 75
           WRITE(*.605)
76
           PAUSE
           WRITE (*.606)
 77
78
           PAUSE
79
           WRITE (*, 607)
80
           PAUSE
81
           ENDIF
82
           WRITE (*,600)
83
           RETURN
       130 WRITE (*.500)
84
85
           PAUSE
           WRITE(*,501)
86
87
           PAUSE
88
           RETURN
89
       140 WRITE(*,*) ' LOC, SEA, MUN, AGN, REL, STB, WND'
90
           DO 145 I=1.7
91
       145 IQT(IQI(I))=1
92
           NOV-0
93
           RETURN
94
95
     C CONTROL OPTION AND QUEST! ON FORMAT STATEMENTS
96
97
       600 FORMAT(//
98
          +' TABLE DISPLAY CODES 1 CONTROL OPTIONS',5X,
99
          +'2 ASSESSMENT OPTIONS'/, 22x, '3 OUTPUT OPTIONS'
100
          +,6X,'4 ALPHABETIC LISTING'/)
101
       601 FORMAT(//
102
          +14X, 'CONTROL OPTIONS'//,6X, 'RST RESTART'/,6X, 'RSN RESCAN'/,
          +6X, 'ALL EXECUTE'/,6X, 'STP STOP'//,6X, 'GTO GO TO '
103
          +'QUESTION NO. (GTO 3)'/,6x,'IRT RETURN TO QUESTION NO.'/,
104
105
          +6X,'INP INPUT QUESTION NO.'//,6X,'HLD HOLD VARIABLE '
```

```
+'(HLD HML)'/,6X,'RLS RELEASE VARIABLE'//,6X,'TAB DISPLAY'
106
          +' TABLE'/.6X.'DSP DISPLAY QUESTION DEFINITION'/.6X.'??? '
107
          +' LIST OF DISPLAY CODES'/)
108
109
       602 FORMAT (///
110
          +16X, 'ASSESSMENT CONTROLS'//,5X, 'IMA=0 DOSAGE (DEFAULT)'/,
          +9x.'1 CONCENTRATION (MG/CU M)'/,9x.'2 CONCENTRATION (PPM)'
111
          +/.9x.'3 FUMIGATION CONCENTRATION'//,5x.'2MC=0 DO NOT'
112
113
          +'USE 2-MINUTE CORRECTION'/, 12X, 'WITH GB AND VX VAPOR'/,
          +9x.'2 USE 2-MINUTE CORRECTION WITH'/,12x,'GB AND VX'
114
          +' VAPOR (DEFAULT)'//.5%,'MNR=0 NO EFFECTS, NO DEATHS'
115
          +', 1% LETHALITY'/,9%,'1 NO DEATHS, 1% LETHALITY'/,
116
          +9X,'2 1% LETHALITY'//,5X,'VDP=0 W/O VAPOR DEPLETION '
117
118
          +'(DEFAULT)'/,9X,'1 W/VAPOR DEPLETION'/)
      603 FORMAT (//
119
          +15X, 'OUTPUT CONTROLS'//,5X, 'NOV=0 LIST QUESTIONS ONLY'/,9X,
120
          +'1 LIST QUESTIONS AND OPTIONS'/.9X,'2 LIST OPTIONS WITH'
121
          +' DEFINITIONS'//,5x,'OPO-O OUTPUT SHORT HEADING (DEFAULT)'/,
122
          +9X,'1 LIST DOSAGE AND DISTANCE'/,9X,'2 ABOVE PLUS COMPON'
123
          +'ENTS OF D'/,9X,'3 CLOUD HALF-WIDTH WITH X'//,5X,
124
          +'OPC=0 USE HT MAX FROM PLRS'/,9X,'1 LIST F(X), USE '
125
          +'HT MAX'/,9X,'2 USE HT-F(X)'/,9X,'3 LIST AND USE F(X)'/)
126
127
       604 FORMAT (//
          +' CODE
                                           INPUT VARIABLE'/
128
                    AGENT, SEE DSP 6'/
129
              AGN
                    CONTROL WORD, EXECUTE PROGRAM'/
130
              ALL
             ALF
                    SLOPE OF THE SIGMA-Y VERSUS X CURVE'/
131
          +' ARE
                                                      (M^2)'/
                    AREA OF PUDDLE
132
          +' BPT
                                                      (DEG K) '/
                    BOILING POINT
133
         +' BRT
                    BREATHING RATE
                                                      (L/MIN) '/
134
          + ' BTA
                    SLOPE OF THE SIGMA-Z VERSUS X CURVE'/
135
                                                      (FT) '/
         +1
136
              CHT
                    CLOUD HEIGHT
         +' CRD
                                                      (M) 1/
137
                    CLOUD RADIUS
         +' DLX
138
                    CHANGE IN X (FIRST CYCLE)
                                                      (M) 1/
         +' DST
                                                      (M) 1/
                    DIAMETER OF STACK
139
         + FMV
                    MOLECULAR VOLUME
                                                      (CM^3 /GM MOLE)'/
140
          +' FMW
                   MOLECULAR WEIGHT'/
141
          +' FRO
                    SLOPE OF THE FROST WIND PROFILE'/
142
          +' GTO
                    CONTROL GO TO SPECIFIED QUESTION'/
143
              HML
                    HEIGHT OF MIXING LAYER
                                                  (M) '/
144
              HLD
                    HOLD VALUE OF SYMBOL'/
145
          + 1
146
             HRL
                    HEAT RELEASED
                                                  (CAL)')
147
      605 FORMAT (//
                    LOCAL STANDARD MILITARY TIME (HRS)'/
148
              HRS
             HST
                    HEIGHT OF STACK
                                                  (M) '/
149
                                                  (M) 1/
                    HEIGHT OF SOURCE
150
             HTS
          +, ICC
151
                    CLOUD COVER
                                                  (1/10)'/
         +' IDD
                    NUMBER OF THE DAY'/
152
153
              IMA
                    METHOD OF ASSESSMENT, SEE TAB 2'/
         +' IMM
154
                    NUMBER OF THE MONTH'/
         +' INP
                    CONTROL. CLEAR INPUT BLOCK FOR QUESTION'/
155
         +' IRT
156
                    CONTROL. RETURN TO SPECIFIED QUESTION'/
         +!
157
             LEN
                    DOWNWIND LENGTH OF PUDDLE
         +' LOC
158
                    LOCATION, SEE DSP 2'/
         +' MNR
159
                    MINIMUN RESPONSE LEVEL, SEE TAB 2'/
         +1 MUN
                    MUNITION, SEE DSP 5'/
160
```

```
NCI
                     NUMBER OF CONCENTRATIONS OF INTEREST'/
                     NUMBER OF DOSAGES OF INTEREST'/
162
              NDI
163
              NMU
                     NUMBER OF MUNITICNS'/
              NOV
                     NOVICE LEVEL'/
164
          +!
165
                     NUMBER OF SOURCE INTERVALS')
              NOI
166
       606 FORMAT(//
          +1
167
              OPC
                     OUTPUT FOR STACK, SEE TAB 3'/
168
              OPO
                     OUTPUT CONTROL, SEE TAP 3'/
                                                          (MM HG) '/
169
              PMM
                     ATOMOSPHERIC PRESSURE
170
              000
                     AIRBORNE SOURCE
                                                          (MG)
          +' RDE
171
                     RELATIVE DENSITY OF EFFLUENT'/
          +' REF
172
                     REFLECTION COEFFICIENT (DEFAULT=1)'/
173
              REL
                     METHOD OF RELEASE, SEE DSP 8'/
          +1"
174
                     RELEASE HOLD OF SYMBOL VALUE'/
              RLS
          + 1
175
              RSN
                     RESCAN FROM QUESTION 2'/
          +' RST
176
                     CONTROL. RESTART'/
          +1
177
              SEA
                     SEASON, SEE DSP 3'/
          +' SKF
178
                     SKIN FACTOR FOR SUBJECT CLOTHING'/
          + 1
179
                                                          (DEG) '/
              SLA
                     LATITUDE
          +1
180
              SLO
                     LONGITUDE
                                                          (DEG) '/
          + 1
181
              SMH
                     SAMPLING HEIGHT
                                                          (M)'/
182
              STB
                     STABILITY, SEE DSP 9'/
183
              SUN
                     SUN ELEVATION ANGLE
                                                          (DEG) '/
          + 1
184
              SUR
                     SURFACE TYPE, SEE DSP 13')
       607 FORMAT(//
185
          + 1
                     SETTLING VELOCITY OF CLOUD CENTROID (DEFAULT=0) (M/SEC) '/
186
              SEV
187
              SXS
                     SOURCE SIGMA -X
                                                          (M) '/
          + 1
188
                     REFERENCE SIGMA -Y AT 100M
                                                          (M) '/
              SYR
          +1
                                                          (H) '/
189
              SYS
                     SOURCE SIGMA -Y
          +1
                                                          (K) '/
190
              SZR
                     REFERNCE SIGMA "Z AT 100M
                                                          (M) 1/
191
              SZS
                     SOURCE SIGMA -Z
          +' TEV
192
                     TIME OF EVAPORATION
                                                          (MIN) '/
          + 1
193
              TIM
                     TIME AFTER FUNCTIONING (INS.HD)
                                                          (MIN)'/
          + 1
194
                     TIME TO MET CHANGE
              TMC
                                                          (NIN) '/
          + 1 TMP
195
                                                          (DEG C)'/
                     TEMPERATURE
          +' TST
196
                                                          (DEG C) '/
                     TEMPERATURE OF STACK
          +' VAP
197
                     VAPOR PRESSURE
                                                          (MM HG) '/
          +1
198
              CDP
                     VAPOR DEPLETION INDICATOR, SEE TAB 2'/
          + 1
199
              VST
                     VELOCITY OF EFFLUENT FROM STACK
                                                          (M/SEC)'/
200
              WND
                     TRANSPORT WIND SPEED
                                                          (H/SEC) '/
          +' W00
201
                     WOODS TYPE, SEE DSP 36'/
202
              ZZO
                     ROUGHNESS LENGHT
                                                          (CM) '/
                     TWO MINUTE CONNECTIONS CONTROL, SEE TAB 2')
203
              2MC
204
205
     C NOV=1 FORMAT STATEMENTS
206
207
      1001 FORMAT (8X, 'AAD, DPG, EWA, JHI, LBG, NAP, PBA, PAD, RMA, UAD, EUR, NDF')
208
      1007 FORMAT (8x, 'WIN, SPR, SUM, FAL')
209
      1003 FORMAT(8X, '105, 155, 8IN, 500, 750, M55, 525, 139, M23, 4.2, NON')
      1004 FORMAT(8X, 'GA, GB, GD, GF, VX, BZ, HY, UD, HD, H1, N3, HT, LL, AC, CG, CK',
210
211
                       'DM,NA')
212
      1005 FORMAT(8X, 'INS, EVP, SEM, VAR, STK, STJ, FLS, FIR, IGL, EVS')
213
      1006 FORMAT(8X, 'A, B, C, D, E, F, U, S, W')
      1012 FORMAT (8X, 'GRA, NPR, NDF')
214
215
      1024 FORMAT(8X, 'DW, MW, CF, MS, RF')
```

```
216 C-----
     C NOV-2 FORMAT STATEMENTS
217
    C-----
218
      2000 FORMAT(8x,'0 SHORT LISTING FOR THE EXPERT'/,8x,'1 LISTS'
219
220
          $' OPTIONS FOR MULTIPLE CHOISE QUESTIONS'/,8X,'2 DEFINES'
221
          S' ALL OPTIONS FOR MULTIPLE CHOISE QUESTIONS'/,8X,'3 EXPL'
222
          $'AINS PROGRAM INPUTS'/)
223
      2005 FORMAT(8X, 'AAD
                             ANNISTON ARMY DEPOT'/8X,
224
          S'DPG
                   DUGWAY PROVING GROUND AND TOOELE ARMY DEPOT' / 8X.
225
          S'EWA
                   EDGEWOOD AREA, APG'/8X, 'JHI
                                                  JOHNSTON ISLAND'/ 8X.
226
                   LEXINGTON-BLUE GRASS ARMY DEPOT'/ 8X,
          S'LBG
227
          $'NAP NEWPORT AMMUNITION PLANT'/ 8X, 'PBA
                                                          PINE BLUFF ARSENAL'
228
          $/8X, 'PAD
                       PUEBLO ARMY DEPOT' / 8X, 'RMA ROCKY MOUNTAIN ARSENAL'
229
          $/8X,'UAD
                       UMATILLA ARMY DEPOT'/8X, 'EUR USAEUR'/8X,
230
          S'NDF
                   NOT DEFINED')
231
      2010 FORMAT(8x, 'WIN
                             WINTER'/8X,'SPR SPRING'/8X,'SUM
                                                                     SUMMER'/
232
          $8X, 'FAL
                      FALL')
      2020 FORMAT (8X, 105
233
                            105-MM CARTRIDGE, M60, M360'/8X,
234
          $'155 155-MM PROJECTILE, M110, M121A1'/8X,
235
          S'8IN
                   8-INCH PROJECTILE, M126'/8X, '500
                                                       500-LB BOMB, MK94'/BX.
                 750-LB BOMB, MC-1'/8X, 'M55 115-MM ROCKET, M55'/8X, 525-LB BOMB, MK116'/8X, '139 BOMBLET, M139'/8X,
236
          $'750
237
          S'525
238
          $'M23
                   LAND MINE, M23'/8X,'4.2 4.2-INCH CARTRIDGE, M2A4'/8X,
239
                   NONMUNITION')
240
      2030 FORMAT (8X, 'GA TABUN', 15X, 'H1 HN-1, NITROGEN MUSTARD'/ 8X, 'GB SA
241
          $RIN',15X,'H3 HN-3,NITROGEN MUSTARD'/ 8X,'GD SOMAN',15X,'HT 60%
242
          SHD & 40% T' /8X,'GF EA 1212',13X,'LL LEWISITE'/ 8X,'VX EA 1701'
243
          $,13X,'AC HYDROGEN CYANIDE'/ 8X,'BZ INCAP AGENT', 9X,'CG PHOSGEN
244
          SE'/ 8X,'HY HYDRAZINE',11X,'CK CYANOGEN CHLOR1DE'/ 8X,'UD UDMH'.
245
          $16X,'DM ADAMSITE'/ 8X,'HD DISTILLED MUSTARD'. 3X,'NA NOT AN AGE
246
          $NT')
247
      2040 FORMAT(8X, 'INS
                            INSTANTANEOUS (EXPLOSIVE) '/8X, 'EVP
                                                                    EVAPORATION
248
          $ FROM A PUDDLE FORMED BY A SPILL'/8X, 'SEM
                                                         UNIFORM RELEASE FOR A
249
          $FINITE TIME'/8X,'VAR SOURCE DEFINED AS A NUMBER OF UNIFORM RELE $ASES(MAX 6)'/8X,'STK RELEASE OF HEATED EFFLUENT FROM STACK'/8X,
250
251
                   RELEASE FROM STACK WITH JET EFFECT'/8X, 'FLS
252
          $FROM GROUND LEVEL'/8x,'FIR FIRE BURNING FOR FINITE TIME'/8x,
253
                   M55 IGLOO FIRE'/8X,'EVS EVAPORATION IN STILL AIR')
          S'IGL
254
      2050 FORMAT(8x, 'A', 5x, 'VERY UNSTABLE' / 8x, 'B', 5x, 'UNSTABLE' /8x, 'C', 5x,
255
          S
                  'SLIGHTLY UNSTABLE'/,8X,'D',5X,'NEUTRAL'/,8X,'E',5X,
                  'SLIGHTLY STABLE'/,8X,'F',5X,'STABLE'/,8X,'U',5X,
256
257
                  'UNDEFINED'/,8x,'S',5x,'SELECT(PASQUILL)'/,8x,'W',5x,
258
                  'WOODS')
259
      2060 FORMAT (8x, 'NQI NUMBER OF TIME INTERVALS')
260
      2070 FORMAT(8X, 'Q() SOURCE FOR EACH INTERVAL'/,
261
          $7X, 'TQ() CUMULATIVE TIME FROM BEGINNING OF FIRST')
262
      2080 FORMAT (8X, 'GRA GRAVEL'/8X, 'NPR NONPOROUS (CONCRETE) '/8X, 'NDF NOT
263
          $ DEFINED')
264
      2090 FORMAT(8X, 'FMW MOLECULAR WEIGHT', /8X, 'FMV MOLECULAR'
265
          S' VOLUME'/8X,'VAP VAPOR PRESSURE (MM HG)'/8X.
266
          $'BPT BOILING POINT (DEG K)'/)
267
      2095 FORMAT(8X, 'O USE HT MAX FROM PLRS'/,8X, '1 LIST F(X), '
268
          $' USE HT MAX'/,8x,'2 'USE HT=f(x)'/,8x,'3 LIST f(x),'
269
          $' USE HT=F(X/)')
279
      2100 FORMAT (8X, 'GRA GRAVEL, LOOSE EARTH'/8X, 'NPR NONPOROUS,
```

```
271
          $ CONCRETE, BLACKTOP'/8X.'NDF NOT DEFINED'/' NOTE: THIS CODE
272
          $ ONLY DETERMINES THE SIZE OF THE WETTED SURFACE')
273
      2110 FORMAT(8X, DW DECIDUOUS, WINTER' / 8X, 'MW MIXED, WINTER' / 8X,
274
          S'CF CONIFEROUS FOREST'/ 8x, 'MS MIXED SUMMER'/ 8x,
275
          S'RF RAIN FOREST')
276
       500 FORMAT(//
277
                 THE OPERATOR MAY CONTROL THE LENGTH OF THE QUESTIONS BY'/
278
          S' SPECIFYING THE NOVICE LEVEL. LEVEL 2 WILL DEFINE ALL OPTIONS, '/
279
          S' LEVEL 1 WILL LIST THE OPTIONS AND LEVEL 0 WILL ONLY STATE THE'/
280
             QUESTIONS. RESPONDING WITH QUESTION MARKS PROVIDES THE LEVEL'/
281
             2 LIST AND THE OUESTION IS REPEATED. '/
                  THE SEQUENCE OF QUESTIONS IS DETERMINED BY THE ANSWERS'/
282
283
          $' GIVEN. UNITS ARE STATED FOR NUMERIC INPUTS. "FOREIGN" UNITS'/
          $' MAY BE CONVERTED BY PRECEEDING THE NUMBER WITH THE CHARACTER
284
285
          $' CODE IDENTIFYING THE UNITS. TWO QUESTION MARKS WILL CAUSE THE '/
286
          $' CODE LIST TO BE DISPLAYED. '/
287
                  THE QUESTIONS TERMINATE WITH ALL OTHER INPUT. '/
          $' HERE ONLY CONTROL OPTIONS OR DATA CHANGES MAY BE ENTERED. '/
288
289
          S' AGAIN QUESTION MARKS WILL DISPLAY THE OPTIONS LIST. CONTROL '!
290
          $' OPTIONS INCLUDE RESTART (RST), STOP (STP) AND GO TO (GTO) ANY '/
291
          $' QUESTION NUMBER. THE CODE ALL WILL COMPLETE THIS INPUT AND'/
292
          $' CAUSE THE DOWNWIND HAZARD TO BE COMPUTED.'///>
293
       501 FORMAT (/
294
                 IF THE CHANGES MADE IN THE ALL QUESTIONS CAUSE THE'/
295
          $' PROGRAM TO REACCESS ITS DATA BASE THE INPUT LOGIC IS RE-'/
296
          $' SCANNED. THIS IS SHOWN BY A DISPLAY OF THE INPUT QUESTIONS, '/
297
          $' BUT NO INPUT IS REQUIRED UNLESS NEW QUESTIONS ARE ASKED. THE'/
298
          $' PROGRAM AGAIN STOPS AT THE ALL QUESTION, AND WILL PROCEED'/
299
          $' WITH THE ANSWER ALL.'/'
                                          WHEN THE DOWNWIND HAZARD ESTI-'/
300
          $' MATE HAS BEEN MADE THE PROGRAM WILL TERMINATE AT THE ALL'/
301
          $' QUESTION. THE OPERATOR MAY CHANGE INDIVIDUAL PARAMETER VALUES'/
302
          $' [INCLUDING NOV] AND REPEAT THE RUN OR RESTART OR STOP.'/
303
          $' A HOLD (HLD) MAY BE PLACED ON ANY VARIABLE IF YOU DO NOT WISH'/
304
          $' ITS VALUE TO BE CHANGED BY RESCAN OF THE DATA BASE. INPUT HLD'/
          $' AND THE VARIABLE CODE(EG. HLD HML). RLS WILL RELEASE THE HOLD.'/
305
306
          $' FOR MORE INFORMATION SEE CHEMICAL SYSTEMS TECHNICAL REPORT'/
307
          $' ARCSL-TR-82014.'//////
308
           END
```

UNT.FOR

```
SUBROUTINE UNT (UM, IA, PRT)
           DIMENSION UMT (25), UC (25), DN25(18), MNE (34), IK (25)
 2
 3
           CHARACTER*2 UM, UMT
           CHARACTER*6 MNE
           DATA UMT/'AT', 'BR', 'CM', 'DF', 'FT', 'SF', 'GM', 'HR', 'IN',
          $ 'KT', 'LB', 'MT', 'PM', 'M3', 'MH', 'MB', 'OZ', 'SC', 'TM',
          $ 'TN', 'GL', 'LT', 'ML', 'PT', 'QT'/
 7
           DATA UC/760.,750.,.01,1.,.3048,.0929,1000.,60.,.0254,
 8
 9
          $ .5148, 4.53592E5,3.281,.01667,.001,.447,.75,28349.5,
          $ .01667, 1.E9,9.0718E8,3.785E6,1.E6,1000.,4.732E5,
10
11
          8 9.464E5/
           DATA DN25/1.0887,1.0083,1.268,.687,1.37,1.18,1.073,
12
13
          $ 1.0222,1.12765,1.09,1.24,1.66,1.89,1.011,.7914,
14
          $ .51,1.65,0./
                         ATM'.'
                                   BAR','
                                              CM', ' DEG F'.'
15
           DATA MNE/'
          S ' SQ FT',
                                               IN','
                               •
                                                         KT'
                                                                   LB'
16
                           GM',
                                     HR'
                                                         MB',
                                          ' MI/HR','
                  M', ' M/MIN', 'C M/MN',
                                                                   02 1
17
                                              GAL','
                SEC', 'TON(H)', ' TON', ' GAL', ' L', ' ML PT', ' QT', 'MH HG', 'DEG C', 'SQ M', 'MG', 'MIN',
                                                                   ML'
18
          $.
19
          S'M/SEC','L/MIN','M', 'FT'/
20
21
           DATA IK/26,26,33,27,33,28,29,30,33,31,29,34,31,32,31,
22
          $ 26,29,30,7*29/
23
       15 DO 1 IC=1,25
           IF (UM.EQ.UMT(IC)) GO TO 2
24
25
        1 CONTINUE
26
           WRITE (*,6)
27
        6 FORMAT (' UNIT CODES')
           DO 9 I=1.5
28
29
        9 WRITE(*,10) (MNE(II),UMT(II),II=I,25,5)
30
       10 FORMAT (1X,5(A6,'=',A2,3X))
31
           UM-'ND'
32
           RETURN
33
        2 PRT=PRT*UC(IC)
34
           IF (IC.EQ.4) PRT=(PRT-32)/1.8
35
           1F (IC.LT.21) GO TO 8
36
           IF (IA.LT.18) GO TO 3
37
           WRITE(*,4)
        4 FORMAT (' INPUT: AGENT DENSITY')
38
39
           READ(*,*) DN25(18)
40
        3 PRT=PRT*DN25(IA)
41
        8 10=1K(1C)
42
           WRITE(*,7) MNE(IC), MNE(IO), PRT
43
        7 FORMAT (1X,A6,' TO ',A5,E9.3)
44
       14 RETURN
45
           END
```

OLIST. FOR

```
SUBROUTINE OLIST(IQ. IRT)
          CHARACTER*1 MTC, AA1, AB1
 3
          CHARACTER*2 AGNT.AA2.WT
          CHARACTER*3
                            MUNT, REL, LOCT, SEAT, SUR, SYM
          CHARACTER*12 ADH
          CHARACTER*30 QTAB
          COMMON NQI,QT(6),TWL(6),D(10),DL(10)
          COMMON PR(1),DXT,HT,HML,SXS,SYS,SZS,TIVCH,UT,BR,SF,TMP,ALFA,SY100,
            BETA, SZ100, Z.RC, V, QS
10
           COMMON TEVP, SA. FL. FMW, FMV, VP, BP
11
          COMMON HS, DS, TSC, VS, RDE, FP, HR, CR
12
          COMMON SLA, SLO, CC, CH, AE, PMM, ZO
13
          COMMON LOCT(1), SEAT, MUNT, AGNT, AA1, REL, MTC, AA2,
14
                  SUR, WT, AB1, ADH, ADR, AD2
15
          COMMON IPR(1), ND, IPO, I2MC, IMA, IPC, IMM, IDD, IHR, NOV, INP, MRL, NMU, ID2,
16
           IDEP, IMTCH, IM, JR, IL, IRL, ISM, IVD, K33, K42
17
          DIMENSION IQM (36), IQR (36), QTAB (37), SYM (37)
18
          DATA IQR /63,43,44,4,45,46,0,47,48,9,13,12,0,24,0,41,49,21,
19
                    22,23,24,1,59,28,29,30,31,32,33,34,35,36,60,38,40,50/
20
           DATA IQM / 10*1,4,9*1,4,10*1,2,3,2,1,1/
21
          DATA OTAB/
22
         $'YOUR NOVICE LEVEL: 3,2,1 OR 0 ', 'LOCATION
23
                                              'HEIGHT OF MIXING LAYER
         S'SEASON
24
         S'MUNITION TYPE
                                               'AGENT TYPE
25
         S'SPILL OR AIRBORNE SOURCE (MG)
                                               'RELEASE TYPE
26
         S'STABILITY TYPE
                                               'WINDSPEED (M/SEC)
27
                                               'TEMPERATURE (DEG C)
         $'ALF, SYR(M), BTA, SZR(M)
28
         $'Q()(MG), TQ()(MIN)
                                               MOLECULAR WEIGHT
29
                                               'atmospheric pressure (MM HG)
         $'ALL OTHER INPUT
30
         S'SURFACE CODE
                                               'TIME OF EVAPORATION (MIN)
31
         S'AREA OF WETTED SURFACE (SQ M)
                                              'LENGTH OF SURFACE DOWNWIND (M)
32
         $'FNW,FMV,VAP(MM HG),BPT(DEG K)
                                              'TIME AFTER FUNCTIONING (MIN)
33
         S'OUTPUT CONTROL CODE
                                               'HEIGHT OF STACK (M)
         S'DIAMETER OF STACK (M)
34
                                              'TEMPERATURE OF STACK (DEG C)
35
         S'VELOCITY OF EFFLUENT (M/SEC)
                                              'RELATIVE DENSITY OF EFFLUENT
36
         S'FROST PROFILE EXPONENT
                                              'HEAT RELEASED (CAL)
37
                                               STATION LATITUDE AND LONGITUDE
         $'CLOUD RADIUS (M)
38
         $'MONTH, DAY, HOUR: (JAN, 01, 1200)
                                              'CLOUD COVER (1/10), CLOUD HT (FT)
39
         $'SUN ELEVATION ANGLE (DEG)
                                              'WOODS TYPE
40
         +'AND ROUGHNESS LENGTH (CM)
41
          DATA SYM/
         $'NOV','LOC','SEA','HML','MUN','AGN','QQQ','REL','STB','WND',
42
                ,'TMP',' ','FMW','
                                       ','PMM','SUR','TEV','ARE','LEN',
43
                             , 'HST', 'DST', 'TST', 'VST', 'RDE', 'FRO', 'HRL'
                ,'TIM','OPC'
44
                                   ,'SUN','WOO','ZZO'/
         S'CRD'.'
45
46
          1F (IQ.GT.36) RETURN
47
          IF (IQ.EQ.17.OR.IQ.EQ.22.OR.IQ.EQ.16.OR.IQ.EQ.23.OR.
48
         +IQ.EQ.29.OR.IQ.EQ.36) WRITE(*,*)
49
          IF (IRT.EQ.1) GO TO 10
50
          IF (IQ.EQ.13.AND.IR.NE.3) THEN
```

```
51
          WRITE(*,104) IQ,Q:A6(IQ),SYM(IQ)
52
          RCTURN
53
          ENDIF
54
           WRITE(*,100) IQ,QTAB(IQ),SYM(IQ)
           IF (IQ.EQ.30.AND.IR.EQ.8) WRITE(*.107)
55
           IF (IQ.EQ.29.AND.IVD.EQ.1) WHITE(*,106) QTAB(37),SYM(37)
56
57
           RETURN
58
       10 IF(IQ.EQ.13.OR.IQ.EQ.7) THEN
           WRITE(*, 105) IQ, QTAB(IQ), (QT(I), TWL(I), I=1, NQI)
59
60
           RETURN
61
           ENDIF
           IC=IQR(IQ)
62
63
           IN-IQM(IQ)
           IF (IC.LT.43) WRITE(*,101) IQ,QTAB(IQ),SYM(IQ),
64
65
          $ (PR (IC+I-1), I=1, IN)
           IF(IC.GT.42.AND.IC.LT.54) WRITE(*,102) IQ,QTAB(IQ),SYM(IQ),
66
          $ (LOCT (IC-42+I-1), I=1, IN)
67
           IF (IC.GT.54) WRITE(*,103) IQ,QTAB(IQ),SYM(IQ),
68
          $(IPR(IC-53+I-1), I=1, IN)
69
           IF (IQ.EQ.29.AND.IVD.EQ.1) WRITE (*, 106) QTAB (37), SYM (37), ZO
70
           IF (IQ.EQ.30.AND.IR.EQ.8) WRITE(*,107)
71
72
           RETURN
73
       100 FORMAT (1X, 12, '. ', A30, A3)
      101 FORMAT (1X, 12, '. ', A30, A3, 4F10.2)
74
      102 FORMAT (1X, 12, '. ', A30, A3, 2X, A3)
75
       103 FORMAT (1X, 12, '. ', A30, A3, 317)
76
       104 FORMAT (1X, 12, '. NQI, ', A30, A3)
77
       105 FORMAT (1X, I2, '. ', A30, 1P2E10.3, /(35X, 2E10.3))
78
79
       106 FORMAT (5X,A30,A3,F10.2)
       107 FORMAT (17X, ' FOR FIR (CAL/SEC)')
80
81
           END
```

Transport of the second second

READA.FOR

1		SUBROUTINE READA(IQ, IRT, IA, PRT)
2		CHARACTER*80 CARD
3		CHARACTER*2 UM
4		CALL DEF(IQ, IRT)
5		IF (IRT.NE.O) RETURN
6 7		READ(*,'(BN,A80)') CARD
7		READ(CARD, 10, ERR=12) PRT
8	10	FORMAT (BN, F12.0)
9		RETURN
10	12	READ(CARD, 13, ERR=14) UM, PRT
11	13	FORMAT (BN, A2, F12.0)
12		CALL UNT (UM, IA, PRT)
13		IF (UM.NE.'ND') RETURN
14	14	CALL DEF(-IQ, IRT)
15		IRT=(-1)
16		RETURN
17		END

ERFF.FOR

```
C ERROR FUNCTION (HASTINGS APPROXIMATION)
 2
          FUNCTION ERFF (A)
 3
          DATA A1/0.070523C78/,A2/0.042282U12/,A3/0.0092705272/
          DATA A4/0.0001520143/,A5/0.0002765672/,A6/.0000430638/
 5
          DATA C/1./
 6
          C-SIGN (C,A)
 7
          Z-ABS(A)
 8
          IF (Z.LT..000001) GO TO 1
 9
          IF (Z.GT.4.) GO TO 2
10
          ERR=((((((A6*Z+A5)*Z+A4)*Z+A3)*Z+A2)*Z+A1)*Z+1.)**16
11
          ERR-ABS(1,-(1,/ERR))
12
          ERFF=ERR*C
13
          RETURN
14
          ERFF-0.
15
          RETURN
16
     2
          ERFF-C
17
          RETURN
18
          END
```

IGLO. FOR

```
SUBROUTINE IGLO (QTS, TWL, NQI, IMU, IA, IR)
 2
          DIMENSION QTS(6), TWL(6), EFF(3), TWLT(3)
 3
          DATA EFF/.022932,.001512,.000756/
          DATA TWLT/15.,20.,60./
          IF (IA.GT.2.OR.IMU.NE.6) GO TO 3
          IF (IA.EQ.2) GO TO 2
          DO 1 I=1,3
          QTS(I)-4.99E6*EFF(I)
        1' TWL(1)=TWLT(1)
          NOI-3
10
11
          IR-4
12
          RETURN
13
        2 QTS(1)-4.45E6*.00164
14
          TWL (1) -5.
15
          NQI-1
16
          IR-3
17
          RETURN
        3 WRITE(*,*) ' IGL IS ONLY DEFINED FOR M55 WITH GB OR VX.'
18
19
          RETURN
20
          END
```

VDPL.FOR

```
SUBROUTINE VDPL(QTTL,SY,SZ,D1,X,DX,DXA,XS,XCH,DP,DPA,SDEPL,INT)
 2
          COMMON VDM (41), UT, VDM1 (23), FP, VDM2 (8), ZO, VDM3 (13),
 3
          +IPO.I2MC.IMA.VDM4(11).IM.IR.IL.VDM5(3).K33.K42
          DIMENSION FKMS(6), 20T(12), DDD(10), DDL(10), DDBR(10),
          +ARD(10),PT(6,3),ITT(12),Y(10)
          DATA PT/.05,.05,.1,.1,.15,.15,.05,.1,.15,.2,.25,.3,.1,
 6
 7
          +.15,.2,.25,.3,.35/
 8
          DATA ITT/3,2,3,1,3,2,3,2,2,3,3,0/
 9
          DATA FKMS/.9,.8,.6,.4,.2,.05/
          DATA ZOT/100.,.03,100.,.005,100.,10.,100.,100.,100.,
10
11
          +100.,100.,100./
12
           GOTO (101, 102, 103, 104) INT
13
     101 ITI=ITT(IL)
14
           IF(K33.EQ.O.AND.IL.LT.12.AND.IM.LT.7) FP-PT(IM.ITI)
15
           IF (K42.EQ.O.AND.IL.LT.12) 20=20T(IL)
16
           UZ=UT*.005**FP
17
           USTR=FP*FKMS(IM)*UZ
18
          DVF2=USTR/UZ
19
          DYF1=DYF2*USTR
20
           BINV=0.06*(19600.*USTR*Z0)**.45
21
          DEPV=DVF1/(1.+DVF2*BINV)
22
          WRITE(*,50)
23
           FORMAT (/5X, 'FP', 7X, 'FKMS', 7X, 'UT', 7X, 'USTR',
     50
24
          +6X, 'BINV', 6X, 'DEPV', 6X, 'QTTL')
25
          WRITE(*,60) FP, FKMS(IM), UT, USTR, BINV, DEPV, QTTL
26
     60
           FORMAT (1X, 1P7E10.3)
27
          DEPV60-DEPV*60.
28
           RETURN
29
           ENTRY VDPL1(SY.SZ.D1)
30
     102 DO 10 I=1,10
31
          ARD(I)=0.
     10
32
           DDMX=QTTL/(188.496*SY*SZ*UT)
33
           DDD(1) = D1/10.
34
           DDDL=(ALOG(DDMX)-ALOG(DDD(1)))/9.
35
           DDL(1)=ALOG(DDD(1))
36
          DO 20 1-2,10
37
           DDL(I) = DDL(I-1) + DDDL
38
           DDD(I)=EXP(DDL(I))
39
          DDBR (I-1) = (DDD(I-1) + DDD(I))/2.
40
           IF (IPO.NE.4) RETURN
41
           1F (IMA.GT.0) GO TO 35
42
           WRITE(*,30) (DDD(I), I=1,10)
43
     30
           FORMAT (/6x, 'DOSAGE CONTOURS', 10F5.0)
44
           WRITE (*, 31)
45
           FORMAT (/7X, 'X', 7X, 'DP', 4X, 'CONTOUR HALF-WIDTHS')
     31
46
           RETURN
47
           WRITE(*,37) (DDD(I), I=1,10)
     35
48
     37
           FORMAT (/7X, 'CONC. CONTOURS', 10F5.0)
49
           WRITE (*.38)
50
     38
          FORMAT (/7x, 'x', 7x, 'CP', 4x, 'CONTOUR HALF-WIDTHS')
```

```
51
          RETURN
52
          ENTRY VDPL2(X, DX, DXA, X$, XCH, DP, DPA, SDEPL)
53
     103 DP-DP*SDEPL
54
          DPA-DPA*SDEPL
55
          IF (DPA.LE.O) RETURN
56
          DPLA-ALOG (DPA)
57
          DO 70 1Y-1,10
58
          ARG-DPLA-DDL (IY)
59
          IF (ARG.LT.O.) GO TO 80
60
          Y(IY)=1.41421*SY*SQRT(ARG)
61
          IF (X.NE.XCH) ARD(IY)=ARD(IY)+Y(IY)*DXA
62
          IF (X.EQ.XCH) ARD(IY)=ARD(IY)-Y(IY)*(XS+DX-XCH)
63
     70
          CONTINUE
64
          IY=11
65
     80
          OD-0.
66
          IF (IPO.GT.O) WRITE(*,'(F5.2)') SDEPL
67
          IY-IY-1
68
          DO 90 I=1.9
69
     90
          QD=QD+DDBR(I)*(ARD(I)-ARD(I+1))*DEPV60
70
          SDEPL= (QTTL-QD) /QTTL
71
          IF (SDEPL.LT.O.) SDEPL=1.E-20
72
          IF (IPO.EQ.4) WRITE(*,100) X,DPA,(Y(I),I=1,IY)
73
     100 FORMAT (1X,F10.0,1PE10.3,0P10F5.0)
74
          RETURN
75
          ENTRY VDPL3
76
     104
          WRITE(*,*) '
                          C OR D
                                      AREA'
          WRITE(*,'(1x,1P2E10.3)') (DDD(I),ARD(I),I=10,1,-1)
77
78
          RETURN
79
          END
```

HMLMDR1.FOR

```
DATA HMLT/2*820.,710.,600.,420.,170.,2*1500.,1060.,620.,360.
2
         1 170.,2*1670.,1080.,490.,440.,310.,2*1340.,945.,550.,360.,160.,
3
         2 2*540.,377.,215.,100.,50.,2*2310.,1277.,245.,150.,100.,
         3 2*3525.,1892.,200.,100.,80.,2*1470.,845.,220.,100.,80.,
 5
          2*780.,750.,720.,530.,180.,2*1720.,1285.,850.,470.,140.,
          2*1970.,1245.,525.,360.,210.,2*1300.,925.,550.,400.,130.,
6
 7
          4*2000.,1250.,500.,4*2000.,1250.,500.,4*2000.,1250.,500.,
8
          4*2000.,1250.,500.,2*740.,765.,790.,640.,430.,2*1500.,1215.
9
         8 930.,560.,340.,2*1530.,1005.,480.,340.,250.,2*1230.,975.,720.
10
           470.,280.,2*430.,440.,450. 320.,130.,2*1170.,840.,510.,320.,120.,
           2*1440.,895.,350.,250.,140.,2*990.,715.,440.,260.,100.,
11
12
          2*780.,705.,630.,520.,160.,2*1460.,1065.,670.,510.,160.,
13
           2*1770.,1220.,670.,550.,220.,2*1270.,975.,680.,550.,140.,
14
          2*1020.,550.,3*85.,2*2780.,1480.,3*185.,2*3290.,1785.,3*180.,
           2*2010.,1050.,3*95.,2*1020.,550.,3*85.,2*2780.,1480.,3*185.,
15
          2*3290.,1785.,3*180.,2*2010.,1050.,3*95.,2*370.,345.,320.,290.,
16
17
         6 280.,2*1900.,1160.,420.,220.,200.,
18
         7 2*2455.,1427.,400.,145.,130.,2*1145.,667.,190.,135.,115.,
19
         8 2*700.,450.,200.,150.,100.,2*1200.,750.,300.,200.,150.,
20
         9 2*1500.,1000.,500.,300.,200.,2*1000.,650.,300.,200.,150./
21
          DATA QF/
22
         $7.39E5,2.95E6,6.58E6,4.9E7,9.98E7,4.99E6,1.58E8,5.9E5,0.,0.,
23
         $0.,2.72E6,6.58E6,0.,0.,4.54E6,0.,0.,5.22E6,0.,
24
         $1.35E6,4.4E6,0.,0.,0.,0.,0.,0.,0.,2.72F6/
25
          DATA SYSM/1.9,3.5,5.0,12.,17.,4.4,21.,1.7,0.,0./
26
          DATA SZSM/.63,1.2,1.7,4.0,5.7,1.5,7.0,.6,0.,0./
27
          DATA PMMT/747.,651.,760.,761.,737.,742.,755.,
28
         $ 641.,628.,730.,752.,0./
29
          DATA D1/.5,6.,10.,.4,2.5,4.3,2.,100.,150.,670.,810.,1180.,
30
         $120.,320.,385.,1525.,1850.,1.E36,1.,12.,20.,.5,6.,10.,
31
         $.5,6.,10.,2.,100.,150.,2.,100.,150.,1.,50.,75.,
32
         $2.,100.,150.,1.E36,1.E36,1.E36,1.E36,1.E36,1.E36,
33
         $1.E36,1.E36,31.,4.,2240.,1.E36/
34
          DATA FMWT/140.1,267.4,159.1,27.02,98.92,61.48,162.18,182.18,
35
         $ 180.2,170.08,204.54,189.4,207.35,32.05,60.1,337.4,277.57/
```

፞ጞዹ፞ዸፚ፞ኇዼ፟ኇዼ፟ኇዼ፟ኇዿ፟ቑቘቑፙፙፚፚቔፚቔፚቔፚቔዹጚፙቘዿፚ፟ኇፚኇዼኇ<mark>ፚቜዄ</mark>ቜ

Blank

APPENDIX F
SAMPLE PROBLEMS

Blank

APPENDIX F

SAMPLE PROBLEMS

GB EXAMPLE

Find the 'no deaths' distance resulting from the detonation of a GB-filled 8-inch projectile given the following conditions:

Location: Pine Bluff Arsenal

● Date/Time: 29 July, 1200 local standard time

• Air temperature: 32 °C (90 °F)

Wind speed: 3 m/sec

Stability: B

2. EXPLOSIVE M23 LAND MINE EXAMPLE

Determine the 1 percent lethality, no deaths, and distances for no effects from an explosive release of VX from an M23 land mine given the following conditions:

Location: Umatilla Army Depot

Date/Time: 15 January, 0800

Temperature: 5 °C

Wind speed: 4 m/sec

• Cloud cover: 10/10

• Cloud height: 3000 feet

Pallet Example

Determine the 1 percent lethality distance after an explosion within a pallet of GB-filled M55 rockets given the following conditions:

● Location: Lexington-Blue Grass Army Depot

Season: Summer

Temperature: 25 °C

Wind speed: 3 m/sec

Stability: D

- Assume open terrain
- Assume a decontamination time of 1 hour for the evaporative source
- The surface type should be labeled "NDF", i.e., "not defined"
- The area of the liquid puddle formed is 549 m² and the downwind length is 9 m
- The evaporative source should be approximated as a normal volume with SXS = 0.83 m and SYS = 7.0 m

4. TON CONTAINER EXAMPLE

Determine the distances to the 1.0 and .01 parts per million (ppm) concentrations resulting from a spill of HD agent when both valves of a ton container are sheared given the following conditions:

Location: Edgewood Arsenal

Season: Summer

Temperature: 22 °C

Wind speed: 8 knots

Stability: E

Leak occurs outside on a gravel surface

Decontamination time: 20 minutes

Twenty percent of the agent fill escapes

5. IGLOO EXAMPLE

Determine the 1 percent lethality distance resulting from a fire in an igloo filled with 1800 M55 rockets containing agent GB given the following conditions:

- Location: Pine Bluff Arsenal
- Date/Time: 17 June, 1400 local standard time
- Air temperature: 80 °F
- Wind speed: 5 m/sec
- Clouds: 6/10 at 30,000 feet

- o Run the model assuming
 - (a) Wooded terrain (mixed summer forest)
 - (b) Open terrain

Blank

INPUT:D2PC

| DOWNWIND HAZARD PROGRAM D2PC |

TYPE ? FOR DEPINITIONS

表<mark>现在,我们的时间,我们的时间,我们的时间,我们的时间,我们</mark>是一个人的时间,我们的时间,我们的时间,我们的时间,我们的时间,我们的时间,我们的时间,他们的时间,

1. YOUR NOVICE LEVEL: 3,2,1 OR 0 NOV INPUT:0

2. LOCATION

LCC

INPUT:PBA

SEA

3. SEASON INPUT:SUM

5. HUNITION TYPE INPUT:8IN

MUN

6. AGENT TYPE INPUT: CB

AGN

REL

8. RELEASE TYPE INPUT: INS

9. STABILITY TYPE

SIB

INPUT:B

10. WINDSPEED (m/sec)

HND

INPUT:3.
DI= .5 6.0 10.0
12. TEMPERATURE (deg C)
INPUT:32.
ALL OTHER INPUT

TOP

1 MUN:81N AGN:GB REL:INS WIND= 3.0 (M/S) TMP=32.0 (C) PBA-SUM STB:B

Q(MG) TS(MIN) HTS(M) HML(M) SXS(M) SYS(M) SZS(M) 4.937E+06 8.00E-02 .00E+00 1.77E+03 5.00E+00 5.00E+00 1.70E+00 B

W/2-HINUTE CORRECTION

309. (M) IS DISTANCE TO 1% LETHALITY

412. (M) IS DISTANCE TO NO DEATHS

W/O 2-MINUTE CORRECTION

1535. (M) IS DISTANCE TO NO EFFECTS

ALL OTHER INPUT

Stop - Program terminated.

SOUND BOOK OF THE STANSON STANSON SOUND SOUND SOUND SOUND SOUND SOUNDS SOUND S

AND2PC

DOWNWIND HAZARD PROGRAM D2PC |

TYPE ? FOR DEFINITIONS

1. YOUR NOVICE LEVEL: 3,2,1 OR 0 NOV INPUT:0'

2. LOCATION INPUT:UAD

LCC

3. SEASON

SEA

INPUT:WIN

5. MUNITION TYPE INPUT: M23

MUN

6. AGENT TYPE

AGN

INPUT:VX

8. RELEASE TYPE

REL

INPUT: INS

STB

9. STABILITY TYPE

INPUT:S

10. WINDSPEED (m/sec)

INPUT: 4. INPUT: YEAR (1986)

WND

33. MONTH, DAY, HOUR: (JAN, 01, 1200) INPUT: JAN, 15,0800

34. CLOUD COVER(1/10), CLOUD HT(ft)
INPUT:10,3000
SS 1638 AE 2.22 SI
EDI= .44 1.76 4.00
ALL OTHER INPUT
ALL

STAB D

1 MUN:M23 AGN:VX REL:INS WND= 4.0 (M/S) TMP= .0 (C) UAD-WIN STB:S

BRT= 25. SRF=2.20E-02

W/2-MINUTE CORRECTION

1116. (M) IS DISTANCE TO 1% LETHALITY

1610. (M) IS DISTANCE TO NO DEATHS

W/O 2-MINUTE CORRECTION

2991. (M) IS DISTANCE TO NO EFFECTS

ALL OTHER INPUT

A>D2PC

| DOWNWIND HAZARD PROGRAM D2PC |

THE PROPERTY OF THE PROPERTY O

TYPE ? FOR DEFINITIONS

```
1. YOUR NOVICE LEVEL: 3,2,1 OR 0 NOV
 INPUT:0
 2. LOCATION
                                         LOC
 INPUT:LBG
 3. SEASON
                                         SEA
 INPUT:SUM
 5. MUNITION TYPE
                                         MUN
 INPUT:M55
 6. AGENT TYPE
                                         AGN
 NPUT:GB
 8. RELEASE TYPE
                                         REL
 INPUT: INS
 9. STABILITY TYPE
                                         STB
 INPIT:D
10. WINDSPEED (m/sec)
                                         WND
INPUT:3,
DI= .5 6.0 1
12. TEMPERATURE (deg C)
                           10.0
                                          TMP
INPUT:25.
ALL OTHER INPUT
NMU 2
ALL
 2. LOCATION
3. SEASON
                                         LOC LIBG
SEA SUM
MUN M55
 5. MUNITION TYPE
 6. AGENT TYPE
8. RELEASE TYPE
9. STABILITY TYPE
                                          AGN
REL
                                               Œ
                                               INS
                                          STB
                                               D
10. WINDSPEED (m/sec)
                                                     3.00
DI= .5 6.0
12. TEMPERATURE (deg C)
                                          ПP
                                                    25,00
ALL OTHER INPUT
NDI 1
INPUT: DI()S
0.1
ALL OTHER INPUT
```

2 MUN:M55 AGN:GB REL:INS WND= 3.0 (M/S) TMP=25.0 (C) LBG-SUM STB:D

Q(MG) TS(MIN) HTS(M) HML(M) SXS(M) SYS(M) SZS(M) 6.9412+06 8.002-02 .002+00 4.802+02 4.402+00 4.402+00 1.502+00 D

W/2-MINUTE CORRECTION

11881. (M) IS DISTANCE TO .100E+00 (MG-MIN/M^3)

SANCTON SANCTO

```
ALL OTHER INPUT
SMD
ALL OTHER INPUT
NMU 13
REL EVP
LL.
 2. LOCATION
                                            LOC LBG
 3. SEASON
5. MUNITION TYPE
6. AGENT TYPE
8. RELEASE TYPE
                                            SEA SUM
MUN M55
                                            AGN GB
                                            REL
                                                 EVP
 9. STABILITY TYPE
                                                 D
                                                       3.00
10. WINDSPEED (m/sec)
                                            WND
     .5
SURPACE
                            10.0
DI=
                   6.0
12. TEMPERATURE (deg C)
                                                      25.00
                                            TMP
17. SURPACE CODE
                                            SUR
 INPUT: NOP
18. TIME OF EVAPORATION (min)
                                            TEV
 INPUT:60.
19. AREA OF WETTED SURFACE (sq m) ARE
 INPUT:549.
20. LENGTH OF SURFACE DOWNWIND (m) LEN
INPUT: 9.

NDF EVR=4.305E+03 (mg/min-sq m) AREA=5.490E+02 (sq m) VPR=2.856E+00 Q=6.487E+07 (mg) Q'=6.487E+07 (mg) TEV=2.745E+01 (min) ALL OTHER INPUT SXS 0.83
SYS 7.
SMP
ALL
   13 MUN:M55 AGN:GB REL:EVP WND= 3.0 (M/S) TMP=25.0 (C) LBG-SUM STB:D
Q (MG) TS (MIN) HTS (M) HML (M) SXS (M) SYS (M) SZS (M) 6.487\text{E+O7} 2.74\text{E+O1} .00\text{E+O0} 4.80\text{E+O2} 8.30\text{E+O1} 7.00\text{E+O0} 1.00\text{E+O1} D
W/2-MINUTE CORRECTION
 DOSAGE IS BEING SUMMED
       2260. (M) IS DISTANCE TO 1% LETHALITY
       3020. (M) IS DISTANCE TO NO DEATHS
 W/O 2-MINUTE CORRECTION
      16686. (M) IS DISTANCE TO NO EFFECTS
 ALL OTHER INPUT
 Stop - Program terminated.
```

THE CONTROL OF THE CO

TYPE ? POR DEPINITIONS

And the track of the tracks that the tracks the tracks that the tracks the tracks that the tracks t

```
1. YOUR NOVICE LEVEL: 3,2,1 OR 0 NOV
 INPUT:0
 2. LOCATION INPUT: EMA
                                              \mathbf{L}\mathbf{C}
                                              SEA
 3. SEASON
 INPUT:SUM
 5. MUNITION TYPE
                                              MUN
 INPUT: NON
 6. AGENT TYPE
                                              ACN
 INPUT:HD
 8. RELEASE TYPE
                                              REL
 INPUT: EVP
 9. STABILITY TYPE
                                              STB
 INPUT:E
10. WINDSPEED (m/sec)
                                              WND
 INPUT:KT 8.
 DI= 2.0 100.0 150.0
7. SPILL OR AIRBORNE SOURCE (mg) QQQ
INPUT:1.6428
GT0007
SURPACE
12. TEMPERATURE (deg C)
                                              TOP
 INPUT: 22.
17. SURFACE CODE
                                              SUR
 INPUT: GRA
18. TIME OF EVAPORATION (min)
                                              TEV
INPUT: 20.

GRA EVR-2.026E+02(mg/min-sq m) AREA=2.509E+01(sq m) VFR=8.197E-02
Q=1.640E+08(mg) Q'=1.017E+05(mg) TEV=2.000E+01(min)
ALL OTHER INPUT
IMA 2
DEPINE NCI
INPUT: CI()S
.01,1.
ALL OTHER INPUT
ALL
```

1 MUN:NON AGN:HD REL:EVP WND= 4.1 (M/S) TMP=22.0 (C) EWA-SUM STB:E

Q(MG) TS(MIN) HTS(M) HML(M) WND 1.017E+05 2.000E+01 .000E+00 3.600E+02 4.118E+00 E

ALF SYR BTA SZR SYS(M) SZS(M) XY(M) XZ(M) XC(M) .80 6.00 .80 3.50 1.7E+00 1.0E-01 2.0E+01 1.2E+00 2.7E+04

X CP RF

6.* 1.000E+00

256.* 1.000E-02 ALL OTHER INPUT STP

TOTAL TOTAL STATE OF THE STATE

ADD2PC

| DOWNWIND HAZARD PROGRAM D2PC |

TYPE ? FOR DEPINITIONS

1. YOUR NOVICE LEVEL: INPUT:0	3,2,1 OR 0	NOV		
2. LOCATION INPUT: PBA		ICC		
3. SEASON INPUT:SUM		SEA		
5. MUNITION TYPE INPUT:M55		MUN		
6. AGENT TYPE INPUT:GB		AGN		
8. RELEASE TYPE INPUT:IGL		REL		
9. STABILITY TYPE INPUT:W		STB		
10. WINDSPEED (m/sec) INPUT:5.		WND		
36. WOODS TYPE INPUT:MS DI= .5 6.0 ALL OTHER INPUT NNU 1800	10.0	WOO		
ALL 2. LOCATION 3. SEASON 5. MUNITION TYPE 6. AGENT TYPE 8. RELEASE TYPE 9. STABILITY TYPE 10. WINDSPEED (m/sec)		LOC SEA MUN AGN REL STB WND	SUM M55 GB IGL W	5.0
36. WOODS TYPE DI= .5 6.0 ALL OTHER INPUT ALL	10.0	WOO	MS	

1800 MUN:MS5 AGN:GB REL:IGL WND= .5(M/S) TMP= .0(C) PRA-SUM STB:W

Q(MG) TS(MIN) HTS(N) EML(M) SMS(M) SYS(M) SES(M) 2.0608+08 1.508+01 .002+00 6.702+02 .002+00 .002+00 .002+00 MS 1.3582+07 2.002+01 6.7902+06 6.002+01

N/2-NINUTE CORRECTION

1209. (M) IS DISTANCE TO 14 LETHALITY

1795. (M) IS DISTANCE TO NO DEATHS

N/O 2-MINUTE CORRECTION

39065. (M) IS DISTANCE TO NO EFFECTS

ALL OTHER INPUT 51B S ИL 2. LOCATION LOC PBA SEA MUN AGN REL SUM M55 3. SEASON 5. MUNITION TYPE 6. AGENT TYPE 8. RELEASE TYPE ICL 5. RELEASE TIPE
9. STABILITY TYPE
10. WINDSPEED (m/sec)
DEUT: YEAR (1986)
1986 STB S 5.0

33. MONTH, DAY, HOUR: (JAN, 01, 1200) INPUT: JUN, 17, 1400

34. CLOUD COVER(1/10), CLOUD HT(ft)
INPUT:6,30000
SR 455 SE 1920 AE 63.40 STAB C
DI= .5 6.0 10.0
ALL OTHER INPUT
ALL

1800 MUN:M55 AGN:GB REL:IGL WND= 5.0 (M/S) TMP= .0 (C) PBA-SUM STB:S

Q(MG) TS(MIN) HTS(M) HPE(M) SXS(M) SYS(M) SZS(M)
2.060B+08 1.50E+01 .00E+00 1.22E+03 .00E+00 .00E+00 .00E+00 C
1.358E+07 2.00E+01 .00E+01 .00E+00 .00E+00 .00E+00 C

W/2-MINUTE CORRECTION

1450. (M) IS DISTANCE TO 14 LETERLITY

1895. (M) IS DISTANCE TO NO DEATHS

W/O 2-KINUTE CORRECTION

8962. (M) IS DISTANCE TO NO EFFECTS

ALL OTHER INPUT

SCHOOL COMMENTAL STATE AS A SECTION OF SECTI